Small scale pellet boiler gas treatment in fog unit

Abstract

The current research is aimed at experimentally finding out characteristic parameters of the operation of the fog unit and their effect on the efficiency of particulate matter capture. To conduct the experiment, a laboratory equipment—fog unit—was designed and prepared. The fog unit is suitable for 10, 20 and 30 kW pellet boilers. The impact of the parameters on essential changes of indicators important for PM capture is described: sprayed water and gas contact surface; droplets and gas contact time in the unit; droplets holdup in the unit. In the process, a regression equation for predicting the effectiveness of PM capture in a direct contact fog unit is obtained. A good experimental and calculated data correlation is observed (adjusted R squared statistics is 85.32%).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Abbreviations

ω1, ω2 :

Inlet and outlet moisture content, kg/kg dry gas

Cp1, Cp2 :

Inlet and outlet PM concentration in flue gas, mg/Nm3

ΔCp :

PM reduction, %

d d :

Diameter of a droplet, m

d d0 :

Initial diameter of a droplet, m

F d :

Total droplets surface area, m2

g :

Water volumetric flow rate, l/s

G b :

Boiler water flow rate, m3/h

G w :

Water volumetric flow rate, l/h

H :

Height of the unit, m

H d :

Droplets holdup of the unit

M f :

Fuel consumption, kg//h

O 2 :

Oxygen concentration in flue gas, %

O f :

Fuel lower heating value, MJ/kg

O fu :

Fog unit capacity, kW

O b :

Boiler capacity, kW

tb1, tb2 :

Boiler water input and output temperature, °C

tg1, tg2 :

Gas inlet and outlet temperature, °C

t w :

Water temperature, °C

tw1, tw2 :

Inlet and outlet water temperature, °C

u d :

Droplet velocity, m/s

u g :

Gas velocity, m/s

u g2 :

Outlet gas velocity, m/s

u r :

Settling velocity of a droplet in relation to gas, m/s

V w :

Water volumetric flowrate, m3/s

V g :

Gas volumetric flowrate, m3/s

S :

Cross-sectional area of the unit, m2

References

  1. 1.

    Ahmad, F., Jain, R.K.: An Experimental study of parameters of wet scrubber for environmental benefit. Int. J. Innov. Res. Sci. Eng. Technol. 5(6), 9675–9680 (2016). https://doi.org/10.15680/IJIRSET/2015.0506024

    Article  Google Scholar 

  2. 2.

    Ahmed, S., Mohsin, H., Qureshi, K., Shah, A., Siddique, W., Waheed, K., Irfan, N., Ahmad, M., Farooq, A.: Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics. Nucl. Eng. Technol. (2018). https://doi.org/10.1016/j.met.2018.01.016

    Article  Google Scholar 

  3. 3.

    Bal, M., Meikap, B.C.: Prediction of hydrodynamic characteristics of a venturi scrubber by using CFD simulation. S. Afr. J. Chem. Eng. 24, 222–231 (2017). https://doi.org/10.1016/j.sajce.2017.10.006

    Article  Google Scholar 

  4. 4.

    Bal, M., Reddy, T.T., Meikap, B.C.: Performance evaluation of venturi scrubber for the removal of iodine in filtered containment venting system. Chem. Eng. Res. Des. 138, 158–167 (2018). https://doi.org/10.1016/j.cherd.2018.08.019

    Article  Google Scholar 

  5. 5.

    Bianchini, A., Pellegrini, M., Rossi, J., Saccani, C.: Theoretical model and preliminary design of an innovative wet scrubber for the separation of fine particulate matter produced by biomass combustion in small size boilers. Biomass Bioenerg. 166, 60–71 (2018). https://doi.org/10.1016/j.biombioe.2018.05.011

    Article  Google Scholar 

  6. 6.

    Bianchini, A., Cento, F.C., Golfera, L., Pelligrini, M., Saccani, C.: Performance analysis of different scrubber systems for removal of particulate emissions from a small size biomass boiler. Biomass Bioenerg. 92, 31–39 (2016). https://doi.org/10.1016/j.biombioe.2016.06.005

    Article  Google Scholar 

  7. 7.

    Bortolotto, T., Silva, J., Sant'Ana, A.C., Tomazi, K.O., Geremias, R., Angioletto, E., Pich, C.T.: Evaluation of toxic and genotoxic potential of a wet gas scrubber effluent obtained from wooden-based biomass furnaces: a case study in the red ceramic industry in southern Brazil. Ecotoxicol. Environ. Saf. 143, 259–265 (2017). https://doi.org/10.1016/j.ecoenv.2017.05.033

    Article  Google Scholar 

  8. 8.

    Brassard, P., Palacios, J.H., Godbout, S., Bussières, D., Lagacé, R., Larouche, J.-P., Pelletier, F.: Comparison of the gaseous and particulate matter emissions from the combustion of agricultural and forest biomasses. Biores. Technol. 155, 300–306 (2014). https://doi.org/10.1016/j.biortech.2013.12.027

    Article  Google Scholar 

  9. 9.

    Chao, C.Y.H., Kwong, P.C.W., Wang, J.H., Cheung, C.W., Kendall, G.: Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions. Biores. Technol. 99, 83–93 (2008). https://doi.org/10.1016/j.biortech.2006.11.051

    Article  Google Scholar 

  10. 10.

    Chen, B., Sun, F., Gao, M., Shi, Y.: A 1-D model of spraying performance for wet flue gas desulfurization scrubber based on predicted slurry temperature. Appl. Therm. Eng. 155, 259–266 (2019). https://doi.org/10.1016/j.applthermaleng.2019.03.064

    Article  Google Scholar 

  11. 11.

    Cheng, T., Zhou, X., Yang, L., Wu, H., Fan, H.: Transformation and removal of ammonium sulfate aerosols and ammonia slip from selective catalytic reduction in wet flue gas desulfurization system. J. Environ. Sci. 88, 72–80 (2020). https://doi.org/10.1016/j.jes.2019.08.002

    Article  Google Scholar 

  12. 12.

    Collazo, J., Porteiro, J., Míguez, J.L., Granada, E., Gómez, M.A.: Numerical simulation of a small-scale biomass boiler. Energy Convers. Manag. 64, 87–96 (2012). https://doi.org/10.1016/j.enconman.2012.05.020

    Article  Google Scholar 

  13. 13.

    Cui, L., Song, X., Li, Y., Wang, Y., Feng, Y., Yan, L., Dong, Y.: Synergistic capture of fine particles in wet flue gas through cooling and condensation. Appl. Energy 225, 656–667 (2018). https://doi.org/10.1016/j.apenergy.2018.04.084

    Article  Google Scholar 

  14. 14.

    Danzomol, B.A., Salami, M.-J.E., Jibrin, S., Khan, R., Nor, I.M.: Performance evaluation of wet scrubber system for industrial air pollution control. ARPN J. Eng. Appl. Sci. 7(12), 1669–1677 (2012)

    Google Scholar 

  15. 15.

    Dastoori, K., Makin, B., Kolhe, M., Des-Roseaux, M., Conneely, M.: CFD modelling of flue gas particulates in a biomass fired stove with electrostatic precipitation. J. Electrostat. 71(3), 351–356 (2013). https://doi.org/10.1016/j.elstat.2012.12.039

    Article  Google Scholar 

  16. 16.

    European Commision: Commission regulation (EU) 2015/1189 of 28 April 2015 implementing Directive 2009/125/EC with regard to ecodesign requirements for solid fuel boilers (2015)

  17. 17.

    Feng, Y., Li, Y., Cui, L.: Critical review of condensable particulate matter. Fuel 224, 801–813 (2018). https://doi.org/10.1016/j.fuel.2018.03.118

    Article  Google Scholar 

  18. 18.

    Feng, Y., Li, Y., Cui, L., Yan, L., Zhao, C., Dong, Y.: Cold condensing scrubbing method for fine particle reduction from saturated flue gas. Energy. 171, 1193–1205 (2019). https://doi.org/10.1016/j.energy.2019.01.065

    Article  Google Scholar 

  19. 19.

    Fernandes, U., Costa, M.: Particle emissions from a domestic pellets-fired boiler. Fuel Process. Technol. 103, 51–56 (2012). https://doi.org/10.1016/j.fuproc.2011.08.020

    Article  Google Scholar 

  20. 20.

    Ghafghazi, S., Sowlati, T., Sokhansanj, S., Bi, X., Melin, S.: Particulate matter emissions from combustion of wood in district heating applications. Renew. Sustain. Energy Rev. 15(6), 3019–3028 (2011). https://doi.org/10.1016/j.rser.2011.04.001

    Article  Google Scholar 

  21. 21.

    Goel, P., Moharana, A., Nayak, A.K.: Measurement of scrubbing behaviour of simulated radionuclide in a submerged venturi scrubber. Nucl. Eng. Des. 327, 92–99 (2018). https://doi.org/10.1016/j.nucengdes.2017.12.003

    Article  Google Scholar 

  22. 22.

    Johansson, L., Leckner, B., Gustavsson, L., Cooper, D., Tullin, C., Potter, A.: Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos. Environ. 38(25), 4183–4195 (2004). https://doi.org/10.1016/j.atmosenv.2004.04.020

    Article  Google Scholar 

  23. 23.

    Johansson, L.S., Tullin, C., Leckner, B., Sjovall, P.: Particle emissions from biomass combustion in small combustors. Biomass Bioenerg. 25(4), 435–446 (2003). https://doi.org/10.1016/S0961-9534(03)00036-9

    Article  Google Scholar 

  24. 24.

    Kim, D.H., Park, T., Lee, C.E.: Heat recovery boilers with water spray: part ii: parametric analysis and optimization of design specifications. Therm. Sci. Eng. Progress. 19, 100643 (2020a). https://doi.org/10.1016/j.tsep.2020.100643

    Article  Google Scholar 

  25. 25.

    Kim, D., Lee, S.J.: Effect of water microdroplet size on the removal of indoor particulate matter. Build. Environ. 181, 107097 (2020b). https://doi.org/10.1016/j.buildenv.2020.107097

    Article  Google Scholar 

  26. 26.

    Keshavarz, P., Bozorgi, Y., Fathikalahahi, J., Taheri, M.: Prediction of the spray scrubbers’ performance in the gaseous and particulate scrubbing processes. Chem. Eng. J. 140(1), 22–31 (2008). https://doi.org/10.1016/j.cej.2007.08.034

    Article  Google Scholar 

  27. 27.

    Lazaroiu, G., Oprea, I., Mihăescu, L., Prisecaru, T., Negreanu, G., Mocanu, R.: Biomass briquettes from pitcoal-wood: Boiler test facility combustion case study. J. Environ. Protect. Ecol. 13(2A), 1070–1081 (2012)

    Google Scholar 

  28. 28.

    Lǎzǎroiu, G., Mihăescu, L., Prisecaru, T., Oprea I., Pîşă, I.,, Negreanu, G., Indrieş R., 2008. Combustion of pitcoal-wood biomass brichettes in a boiler test facility. Environmental Engineering and Management Journal. 7(5), 595–601, 2008, doi:10.30638/eemj.2008.083.

  29. 29.

    Lee, C.E., Kim, D.H.: Heat recovery boilers with water spray. Part I: thermodynamic analysis validation and boiler practicality. Therm. Sci. Eng. Progress. 18, 100491 (2020). https://doi.org/10.1016/j.tsep.2020.100491

    Article  Google Scholar 

  30. 30.

    Lim, K., Lee, S.H., Park, H.S.: Prediction for particle removal efficiency of a reverse jet scrubber. J. Aerosol Sci. 37(12), 1826–1839 (2006). https://doi.org/10.1016/j.jaerosci.2006.06.010

    Article  Google Scholar 

  31. 31.

    Luan, Z., Liu, X., Zheng, M., Zhu, L.: Numerical simulation of square section venturi scrubber with horizontal spray. Procedia Comput. Sci. 107, 117–121 (2017). https://doi.org/10.1016/j.procs.2017.03.066

    Article  Google Scholar 

  32. 32.

    Meikap, B.C., Biswas, M.N.: Fly-ash removal efficiency in a modified multi-stage bubble column scrubber. Sep. Purif. Technol. 36(6), 177–190 (2004). https://doi.org/10.1016/S1383-5866(03)00213-2

    Article  Google Scholar 

  33. 33.

    Mohan, B., Meikap, B.C.: Performance characteristics of the particulate removal in a novel spray-cum-bubble column scrubber. Chem. Eng. Res. Des. 87(1), 109–118 (2009). https://doi.org/10.1016/j.cherd.2008.05.011

    Article  Google Scholar 

  34. 34.

    Mohan, B., Meikap, B.C.: Performance characteristics of the particulate removal in a novel spray-cum-bubble column scrubber. Chem. Eng. Res. Des. 81(1), 109–118 (2009). https://doi.org/10.1016/j.cherd.2008.05.011

    Article  Google Scholar 

  35. 35.

    Moharana, A., Goel, P., Nayak, A.K.: Performance estimation of a venturi scrubber and its application to self-priming operation in decontaminating aerosol particulates. Nucl. Eng. Des. 320, 165–182 (2017). https://doi.org/10.1016/j.nucengdes.2017.05.023

    Article  Google Scholar 

  36. 36.

    Molchanov, O., Krpec, K., Horák, J.: Electrostatic precipitation as a method to control the emissions of particulate matter from small-scale combustion units. J. Clean. Prod. 246(119022), 2020 (2020). https://doi.org/10.1016/j.jclepro.2019.119022

    Article  Google Scholar 

  37. 37.

    Olave, R.J., Forbes, E.G.A., Johnston, C.R., Relf, J.: Particulate and gaseous emissions from different wood fuels during combustion in a small-scale biomass heating system. Atmos. Environ. 157, 49–58 (2017). https://doi.org/10.1016/j.atmosenv.2017.03.003

    Article  Google Scholar 

  38. 38.

    Olsson, M.: Wheat straw and peat for fuel pellets—organic compounds from combustion. Biomass Bioenergy. 30(6), 555–564 (2006). https://doi.org/10.1016/j.biombioe.2006.01.005

    Article  Google Scholar 

  39. 39.

    Pak, S.I., Chang, K.S.: Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray. J. Hazard. Mater. 138(3), 560–573 (2006). https://doi.org/10.1016/j.jhazmat.2006.05.105

    Article  Google Scholar 

  40. 40.

    Patra, T.K., Sheth, P.N.: Biomass gasification coupled with producer gas cleaning, bottling and HTS catalyst treatment for H2-rich gas production. Int. J. Hydrogen Energy 44(23), 11602–11616 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.107

    Article  Google Scholar 

  41. 41.

    Petrov, O., Bi, X., Lau, A.: Impact assessment of biomass-based district heating systems in densely populated communities. Part II: Would the replacement of fossil fuels improve ambient air quality and human health? Atmos. Environ. 161, 191–199 (2017). https://doi.org/10.1016/j.atmosenv.2017.05.001

    Article  Google Scholar 

  42. 42.

    Price-Allison, A., Lea-Langton, A.R., Mitchel, E.J.S.: Emissions performance of high moisture wood fuels burned in a residential stove. Fuel 239, 1038–1045 (2019). https://doi.org/10.1016/j.fuel.2018.11.090

    Article  Google Scholar 

  43. 43.

    Priedniece, V., Kalnins, E., Kirsanovs, V., Dzikevics, M., Blumberga, D., Veidenbergs, I.: Sprayed water flowrate, temperature and drop size effects on small capacity flue gas condenser’s performance. Environ. Clim. Technol. 23(3), 333–346 (2019a). https://doi.org/10.2478/rtuect-2019-0099

    Article  Google Scholar 

  44. 44.

    Priedniece, V., Kalniņš, E., Kirsanovs, V., Pedisius, N., Veidenbergs, I., Blumberga, D.: Particulate matter emission decrease possibility from household sector using flue gas condenser—fog unit. Analysis and interpretation of results. Environ. Clim. Technol. 1(23), 135–151 (2019). https://doi.org/10.2478/rtuect-2019-0010

    Article  Google Scholar 

  45. 45.

    Prodi, F., Santachiara, G., Belosi, F., Vedernikov, A., Balapanov, D.: Phoretic forces on aerosol particles surrounding an evaporating droplet in microgravity conditions. Atmos. Res. 142, 40–44 (2014). https://doi.org/10.1016/j.atmosres.2013.09.001

    Article  Google Scholar 

  46. 46.

    Rafidi, N., Brogaard, F., Chen, L., Hakansson, R., Tabikh, A.: CFD and experimental studies on capture of fine particles by liquid droplets in open spray towers. Sustain. Environ. Res. 28(6), 382–388 (2018). https://doi.org/10.1016/j.serj.2018.08.003

    Article  Google Scholar 

  47. 47.

    Ramanauskas, V., Miliauskas, G.: The water droplets dynamics and phase transformations in biofuel flue gases flow. Int. J. Heat Mass Transf. 131, 546–557 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.095

    Article  Google Scholar 

  48. 48.

    Schober, P., Schwarte, L.A.: Correlation coefficients: appropriate use and interpretation. Anesth. Analg. 126(5), 1763–1768 (2018). https://doi.org/10.1213/ANE.0000000000002864

    Article  Google Scholar 

  49. 49.

    Simin, W., Jiarui, W., Chen, S., Jian, W.: Numerical investigation on urea particle removal in a spray scrubber using particle capture theory. Chem. Eng. Res. Des. 145, 150–158 (2019). https://doi.org/10.1016/j.cherd.2019.03.011

    Article  Google Scholar 

  50. 50.

    Siregar, K., Alamsyah, R., Tou, S., Siregar, N.C.: The integration of gasification systems with gas engine by developing wet tar scrubbers and gas filter to produce electrical energy from biomass. MATEC Web Conf. 164, 01024 (2018). https://doi.org/10.1051/matecconf/201816401024

    Article  Google Scholar 

  51. 51.

    Surjosatyo, A., Anggriawan, M.B., Hermawan, A.A., Dafiqurrohman, H.: Comparison between secondary thermal cracking methods and venturi scrubber filtering in order to reduce tar in biomass gasification. Energy Procedia. 158, 749–754 (2019). https://doi.org/10.1016/j.egypro.2019.01.200

    Article  Google Scholar 

  52. 52.

    Tong, Z., Yang, B., Jopke, P.K., Zhang, K.M.: Microenvironmental air quality impact of a commercial-scale biomass heating system. Environ. Pollut. 220B, 1112–1120 (2017). https://doi.org/10.1016/j.envpol.2016.11.025

    Article  Google Scholar 

  53. 53.

    US Environmental Protection Agency: Design Evaluation of Particulate Wet Scrubber System. SI. 412C Module 10,10–3 (2011)

  54. 54.

    Verma, V.K., Bram, S., Gauthier, G., Ruyck, J.D.: Performance of a domestic pellet boiler as a function of operational loads: part-2. Biomass Bioenergry. 35(1), 272–279 (2011). https://doi.org/10.1016/j.biombioe.2010.08.043

    Article  Google Scholar 

  55. 55.

    Vicente, E.D., Alves, C.A.: An overview of particulate emissions from residential biomass combustion. Atmos. Res. 199, 159–185 (2018). https://doi.org/10.1016/j.atmosres.2017.08.027

    Article  Google Scholar 

  56. 56.

    Villeneuve, J., Palacios, J.H., Savoie, P., Godbout, S.: A critical review of emission standards and regulations regarding biomass combustion in small scale units (<3 MW). Biores. Technol. 111, 1–11 (2012). https://doi.org/10.1016/j.biortech.2012.02.061

    Article  Google Scholar 

  57. 57.

    Wu, H., Pan, D., Zhang, R., Yang, L., Peng, Z., Yang, B.: Reducing fine particle emissions by heterogeneous vapor condensation after wet desulfurization process. Chem. Technol. Biotechnol. (2017). https://doi.org/10.1002/jctb.5236

    Article  Google Scholar 

  58. 58.

    Zhang, D.: Ash fouling, deposition and slagging in ultra-supercritical coal power plants, ultra-supercritical coal power plants, pp. 133–183. Woodhead Publishing, Sawston (2013)

    Google Scholar 

  59. 59.

    Zhang, S., Rind, N.A., Tang, N., Liu, H., Yin, X., Yu, J., Ding, B.: Electrospun nanofibers for air filtration. Electrospinning: nanofabrication and applications, pp. 365–389. William Andrew Publishing, Burlington (2019)

    Google Scholar 

Download references

Acknowledgements

The work has been supported by European Regional Development Fund project “Individual Heating with Integrated Fog Unit System (IFUS)” 1.1.1.1/16/A/015.

figurea

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimirs Kirsanovs.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blumberga, D., Priedniece, V., Kalniņš, E. et al. Small scale pellet boiler gas treatment in fog unit. Int J Energy Environ Eng (2020). https://doi.org/10.1007/s40095-020-00357-x

Download citation

Keywords

  • Air pollution
  • Wet scrubber
  • Performance evaluation
  • Particulate matter
  • Droplet
  • Pellet boiler