Synergising the thermal behaviour of water bodies within thermal environment of wetland settlements

Abstract

The thermal characteristics of an area are influenced by the surrounding physical environment including land cover, land use, and urban geometry. The environment of wetland settlements is primarily influenced by the presence of water bodies. This study utilised land cover and urban geometry to characterise the thermal behaviour of the Ogan Permata Indah Jakabaring Palembang wetland settlement area. Data collected hourly during 72 h of field measurements included air temperature, relative humidity, globe temperature, and wind velocity. The cloud cover was qualitatively recorded. The land cover, urban geometry, and solar and wind orientations of the settlement were also investigated. Results showed that compared to the natural environment, the increase of air temperature during the day in built-up areas is about 2.5–7.4 °C which depends on the weather condition. Besides that, the openness of the area facilitated airflow, while roughness increased airflow turbulence, rendering more effective cooling. The role of the water body in delaying heat re-emission into the environment was more effective if the building geometry did not inhibit airflow. In this case, the role of the water body is to increase the surrounding air temperature by 1.2–1.6 °C at night, as stabilization of daily temperature. This study demonstrates that wetland settlement development policies should consider their unique thermal environment. Settlement development policies should be guided by form aspects, considering the role of the wind cooling effect, and by material aspects, considering the role of water thermal mass for delaying the re-emission of heat energy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Grossman-Clarke, S., Zehnder, J.A., Loridan, T., Grimmond, C.S.B.: Contribution of land use changes to near-surface air temperatures during recent summer extreme heat events in the Phoenix Metropolitan area. J. Appl. Meteorol. Climatol. 49, 1649–1664 (2010). https://doi.org/10.1175/2010JAMC2362.1

    Article  Google Scholar 

  2. 2.

    Shojaei, P., Gheysari, M., Myers, B., Eslamian, S., Shafieiyoun, E., Esmaeili, H.: Effect of different land cover/use types on canopy layer air temperature in an urban area with a dry climate. Build. Environ. 125, 451–463 (2017). https://doi.org/10.1016/j.buildenv.2017.09.010

    Article  Google Scholar 

  3. 3.

    Pal, S., Ziaul, S.: Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Sp. Sci. 20, 125–145 (2017). https://doi.org/10.1016/j.ejrs.2016.11.003

    Article  Google Scholar 

  4. 4.

    Moyer, A.N., Hawkins, T.W.: River effects on the heat island of a small urban area. Urban Clim. 21, 262–277 (2017). https://doi.org/10.1016/j.uclim.2017.07.004

    Article  Google Scholar 

  5. 5.

    Wong, P.P., Lai, P., Low, C., Chen, S., Hart, M.: The impact of environmental and human factors on urban heat and microclimate variability. Build. Environ. 95, 199–208 (2016). https://doi.org/10.1016/j.buildenv.2015.09.024

    Article  Google Scholar 

  6. 6.

    Rajagopalan, P., Lim, K.C., Jamei, E.: Urban heat island and wind flow characteristics of a tropical city. Sol. Energy. 107, 159–170 (2014). https://doi.org/10.1016/j.solener.2014.05.042

    Article  Google Scholar 

  7. 7.

    Raghavan, K., Mandla, V., Franco, S.: Influence of urban areas on environment: special reference to building materials and temperature anomalies using geospatial technology. Sustain. Cities Soc. 19, 349–358 (2015). https://doi.org/10.1016/j.scs.2015.05.001

    Article  Google Scholar 

  8. 8.

    Sharmin, T., Steemers, K., Matzarakis, A.: Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustain. Cities Soc. 34, 293–308 (2017). https://doi.org/10.1016/j.scs.2017.07.006

    Article  Google Scholar 

  9. 9.

    Emmanuel, R.: Assessment of impact of land cover changes on urban bioclimate: the case of Colombo. Sri Lanka Archit. Sci. Rev. 46, 151–158 (2003). https://doi.org/10.1080/00038628.2003.9696978

    Article  Google Scholar 

  10. 10.

    Mizuno, M., Nakamura, Y., Murakami, H., Yamamoto, S.: Effects of land use on urban horizontal atmospheric temperature distributions. Energy Build. 15–16, 165–176 (1990). https://doi.org/10.1016/0378-7788(90)90128-6

    Article  Google Scholar 

  11. 11.

    Wang, B., Koh, W.S., Liu, H., Yik, J., Bui, V.P.: Simulation and validation of solar heat gain in real urban environments. Build. Environ. 123, 261–276 (2017). https://doi.org/10.1016/j.buildenv.2017.07.006

    Article  Google Scholar 

  12. 12.

    Bernabe, A., Musy, M., Andrieu, H., Calmet, I.: Radiative properties of the urban fabric derived from surface form analysis: a simplified solar balance model. Sol. Energy. 122, 156–168 (2015). https://doi.org/10.1016/j.solener.2015.08.031

    Article  Google Scholar 

  13. 13.

    Shahrestani, M., Yao, R., Luo, Z., Turkbeyler, E., Davies, H.: A field study of urban microclimates in London. Renew. Energy. 73, 3–9 (2015). https://doi.org/10.1016/j.renene.2014.05.061

    Article  Google Scholar 

  14. 14.

    Yang, X., Li, Y.: The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 90, 146–156 (2015). https://doi.org/10.1016/j.buildenv.2015.03.037

    Article  Google Scholar 

  15. 15.

    Elnabawi, M.H., Hamza, N., Dudek, S.: Numerical modelling evaluation for the microclimate of an outdoor urban form in Cairo. Egypt. HBRC J. 11, 246–251 (2015). https://doi.org/10.1016/j.hbrcj.2014.03.004

    Article  Google Scholar 

  16. 16.

    Andreou, E., Axarli, K.: Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renew. Energy. 43, 354–363 (2012). https://doi.org/10.1016/j.renene.2011.11.038

    Article  Google Scholar 

  17. 17.

    Nazarian, N., Kleissl, J.: CFD simulation of an idealized urban environment: thermal effects of geometrical characteristics and surface materials. Urban Clim. 12, 141–159 (2015). https://doi.org/10.1016/j.uclim.2015.03.002

    Article  Google Scholar 

  18. 18.

    Devi, N.N., Sridharan, B., Kuiry, S.N.: Impact of urban sprawl on future flooding in Chennai city India. J. Hydrol. 574, 486–496 (2019). https://doi.org/10.1016/j.jhydrol.2019.04.041

    Article  Google Scholar 

  19. 19.

    Zope, P.E., Eldho, T.I., Jothiprakash, V.: Impacts of land use—land cover change and urbanization on flooding: a case study of Oshiwara River Basin in Mumbai India. CATENA 145, 142–154 (2016). https://doi.org/10.1016/j.catena.2016.06.009

    Article  Google Scholar 

  20. 20.

    Dingman, S.L.: Physical Hydrology. Waveland Press Inc, Illinois (2015)

    Google Scholar 

  21. 21.

    Hathway, E.A., Sharples, S.: The interaction of rivers and urban form in mitigating the urban heat island effect: a UK case study. Build. Environ. 58, 14–22 (2012). https://doi.org/10.1016/j.buildenv.2012.06.013

    Article  Google Scholar 

  22. 22.

    Manteghi, G., Bin Limit, H., Remaz, D.: Water bodies an urban microclimate: a review. Mod. Appl. Sci. 9, 1–12 (2015). https://doi.org/10.5539/mas.v9n6p1

    Article  Google Scholar 

  23. 23.

    Xu, D., Zhou, D., Wang, Y., Xu, W., Yang, Y.: Field measurement study on the impacts of urban spatial indicators on urban climate in a Chinese basin and static-wind city. Build. Environ. 147, 482–494 (2019). https://doi.org/10.1016/j.buildenv.2018.10.042

    Article  Google Scholar 

  24. 24.

    Li, X., Norford, L.K.: Evaluation of cool roof and vegetations in mitigating urban heat island in a tropical city. Singapore. Urban Clim. 16, 59–74 (2016). https://doi.org/10.1016/j.uclim.2015.12.002

    Article  Google Scholar 

  25. 25.

    Triyuly, W., Triyadi, S., Wonorahardjo, S.: A review of thermal environmental quality in residential areas in tropical cities. IOP Conf. Ser. Earth Environ. Sci. 152, 1–10 (2018). https://doi.org/10.1088/1755-1315/152/1/012034

    Article  Google Scholar 

  26. 26.

    Jin, H., Shao, T., Zhang, R.: Effect of water body forms on microclimate of residential district. Energy Procedia. 134, 256–265 (2017). https://doi.org/10.1016/j.egypro.2017.09.615

    Article  Google Scholar 

  27. 27.

    Tominaga, Y., Sato, Y., Sadohara, S.: CFD simulations of the effect of evaporative cooling from water bodies in a micro-scale urban environment: validation and application studies. Sustain. Cities Soc. 19, 259–270 (2015). https://doi.org/10.1016/j.scs.2015.03.011

    Article  Google Scholar 

  28. 28.

    Yan, H., Fan, S., Guo, C., Wu, F., Zhang, N., Dong, L.: Assessing the effects of landscape design parameters on intra-urban air temperature variability: the case of Beijing. China. Build. Environ. 76, 44–53 (2014). https://doi.org/10.1016/j.buildenv.2014.03.007

    Article  Google Scholar 

  29. 29.

    Şimşek, Ç.K., Ödül, H.: Investigation of the effects of wetlands on micro-climate. Appl. Geogr. 97, 48–60 (2018). https://doi.org/10.1016/j.apgeog.2018.05.018

    Article  Google Scholar 

  30. 30.

    Wahfiuddin, M.H.: Suhu permukaan daratan Kota Palembang, Sumatera Selatan tahun 2001 dan 2014. Universitas Indonesia, Jakarta (2015)

    Google Scholar 

  31. 31.

    Tong, S., Wong, N.H., Jusuf, S.K., Tan, C.L., Wong, H.F., Ignatius, M., Tan, E.: Study on correlation between air temperature and urban morphology parameters in built environment in northern China. Build. Environ. 127, 239–249 (2018). https://doi.org/10.1016/j.buildenv.2017.11.013

    Article  Google Scholar 

  32. 32.

    Yokohari, M., Brown, R.D., Kato, Y., Yamamoto, S.: The cooling effect of paddy fields on summertime air temperature in residential Tokyo. Japan. Landsc. Urban Plan. 53, 17–27 (2001). https://doi.org/10.1016/S0169-2046(00)00123-7

    Article  Google Scholar 

  33. 33.

    Wei, R., Song, D., Wong, N.H., Martin, M.: Impact of urban morphology parameters on microclimate. Procedia Eng. 169, 142–149 (2016). https://doi.org/10.1016/j.proeng.2016.10.017

    Article  Google Scholar 

  34. 34.

    Coutts, A.M., Tapper, N.J., Beringer, J., Loughnan, M., Demuzere, M.: Watering our cities: the capacity for water sensitive urban design to support urban cooling and improve human thermal comfort in the Australian context. Prog. Phys. Geogr. 37, 2–28 (2013). https://doi.org/10.1177/0309133312461032

    Article  Google Scholar 

  35. 35.

    Dahanayake, K.W.D.K.C., Chow, C.L.: Studying the potential of energy saving through vertical greenery systems: using EnergyPlus simulation program. Energy Build. 138, 47–59 (2017). https://doi.org/10.1016/J.enbuild.2016.12.002

    Article  Google Scholar 

  36. 36.

    Oke, T.R., Kalanda, B.D., Steyn, D.G.: Parameterization of heat storage in urban areas. Urban Ecol. 5, 45–54 (1980). https://doi.org/10.1016/0304-4009(81)90020-6

    Article  Google Scholar 

  37. 37.

    Shrestha, D.P., Saepuloh, A., Van Der Meer, F.: Land cover classification in the tropics, solving the problem of cloud covered areas using topographic parameters. Int J Appl Earth Obs Geoinf. 77, 84–93 (2019). https://doi.org/10.1016/j.jag.2018.12.010

    Article  Google Scholar 

  38. 38.

    Wonorahardjo, S.: New concepts in districts planning, based on heat island investigation. Procedia—Soc. Behav. Sci. 36, 235–242 (2012). https://doi.org/10.1016/j.sbspro.2012.03.026

    Article  Google Scholar 

  39. 39.

    Wonorahardjo, S., Sutjahja, I.M., Kurnia, D., Fahmi, Z., Putri, W.A.: Potential of thermal energy storage using coconut oil for air temperature control. Buildings 8, 1–16 (2018). https://doi.org/10.3390/buildings8080095

    Article  Google Scholar 

  40. 40.

    Wonorahardjo, S., Sutjahja, I.M., Mardiyati, Y., Andoni, H., Thomas, D., Achsani, R.A., Steven, S.: Characterising thermal behaviour of buildings and its effect on urban heat island in tropical areas. Int. J. Energy Environ. Eng. 11, 129–142 (2020). https://doi.org/10.1007/s40095-019-00317-0

    Article  Google Scholar 

  41. 41.

    Lin, P., Lau, S.S.Y., Qin, H., Gou, Z.: Effects of urban planning indicators on urban heat island: a case study of pocket parks in high-rise high-density environment. Landsc. Urban Plan. 168, 48–60 (2017). https://doi.org/10.1016/J.landurbplan.2017.09.024

    Article  Google Scholar 

  42. 42.

    Tang, Q., Leng, G.: Changes in cloud cover, precipitation, and summer temperature in North America from 1982 to 2009. J. Clim. 26, 1733–1744 (2013). https://doi.org/10.1175/jcli-d-12-00225.1

    Article  Google Scholar 

  43. 43.

    Ignatius, M., Wong, N.H., Jusuf, S.K.: Urban microclimate analysis with consideration of local ambient temperature, external heat gain, urban ventilation, and outdoor thermal comfort in the tropics. Sustain. Cities Soc. 19, 121–135 (2015). https://doi.org/10.1016/j.scs.2015.07.016

    Article  Google Scholar 

  44. 44.

    Asfour, O.S.: Prediction of wind environment in different grouping patterns of housing blocks. Energy Build. 42, 2061–2069 (2010). https://doi.org/10.1016/j.enbuild.2010.06.015

    Article  Google Scholar 

  45. 45.

    Gu, L.D., Min, J.C., Tang, Y.C.: Effects of mass transfer on heat and mass transfer characteristics between water surface and airstream. Int. J. Heat Mass Transf. 122, 1093–1102 (2018). https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.02.061

    Article  Google Scholar 

  46. 46.

    Zhang, L., Feng, Y., Meng, Q., Zhang, Y.: Experimental study on the building evaporative cooling by using the climatic wind tunnel. Energy Build. 104, 360–368 (2015). https://doi.org/10.1016/j.enbuild.2015.07.038

    Article  Google Scholar 

  47. 47.

    Taleghani, M., Kleerekoper, L., Tenpierik, M., van den Dobbelsteen, A.: Outdoor thermal comfort within five different urban forms in the Netherlands. Build. Environ. 83, 65–78 (2015). https://doi.org/10.1016/j.buildenv.2014.03.014

    Article  Google Scholar 

  48. 48.

    Sharmin, T., Steemers, K., Matzarakis, A.: Analysis of microclimatic diversity and outdoor thermal comfort perceptions in the tropical megacity Dhaka Bangladesh. Build. Environ. 94, 734–750 (2015). https://doi.org/10.1016/j.buildenv.2015.10.007

    Article  Google Scholar 

  49. 49.

    Kusumastuty, K.D., Poerbo, H.W., Koerniawan, M.D.: Climate-sensitive urban design through Envi-Met simulation: case study in Kemayoran, Jakarta. IOP Conf. Ser. Earth Environ. Sci. 129, 1–10 (2018). https://doi.org/10.1088/1755-1315/129/1/012036

    Article  Google Scholar 

  50. 50.

    Moreno, R., Olías, M., Macías, F., Cánovas, C.R., Fernández de Villarán, R.: Hydrological characterization and prediction of flood levels of acidic pit lakes in the Tharsis mines, Iberian Pyrite Belt. J. Hydrol. 566, 807–817 (2018). https://doi.org/10.1016/j.jhydrol.2018.09.046

    Article  Google Scholar 

  51. 51.

    Ogilvie, A., Belaud, G., Massuel, S., Mulligan, M., Le Goulven, P., Malaterre, P., Calvez, R.: Combining landsat observations with hydrological modelling for improved surface water monitoring of small lakes. J. Hydrol. 566, 109–121 (2018). https://doi.org/10.1016/j.jhydrol.2018.08.076

    Article  Google Scholar 

  52. 52.

    Sun, R., Chen, L.: How can urban water bodies be designed for climate adaptation? Landsc. Urban Plan. 105, 27–33 (2012). https://doi.org/10.1016/j.landurbplan.2011.11.018

    Article  Google Scholar 

  53. 53.

    Syafii, N.I., Ichinose, M., Kumakura, E., Jusuf, S.K., Chigusa, K., Wong, N.H.: Thermal environment assessment around bodies of water in urban canyons: a scale model study. Sustain. Cities Soc. 34, 79–89 (2017). https://doi.org/10.1016/j.scs.2017.06.012

    Article  Google Scholar 

  54. 54.

    Wang, W., Xiao, W., Cao, C., Gao, Z., Hu, Z., Liu, S., Shen, S., Wang, L., Xiao, Q., Xu, J., Yang, D., Lee, X.: Temporal and spatial variations in radiation and energy balance across a large freshwater lake in China. J. Hydrol. 511, 811–824 (2014). https://doi.org/10.1016/j.jhydrol.2014.02.012

    Article  Google Scholar 

  55. 55.

    Yang, W., Wang, Z., Zhao, X.: Experimental investigation of the thermal isolation and evaporative cooling effects of an exposed shallow-water-reserved roof under the sub-tropical climatic condition. Sustain. Cities Soc. Jou. 14, 293–304 (2015). https://doi.org/10.1016/j.scs.2014.10.003

    Article  Google Scholar 

  56. 56.

    Badan Informasi Geospasial (BIG) Indonesia, Data Rupa Bumi Indonesia (RBI) wilayah Sumatera Selatan (2017)

  57. 57.

    Badan Informasi Geospasial (BIG) Indonesia, Data Digital Elevation Model (DEM) wilayah Sumatera Selatan (2017)

  58. 58.

    Badan Informasi Geospasial (BIG) Indonesia, Informasi Geospasial Dasar (IGD), [Online]. https://tanahair.indonesia.go.id/portal-web/ (2019). Accessed 1 May 2019

  59. 59.

    Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Stasiun Kelas 1 Kenten Palembang, Data meteorologi kota Palembang tahun 2011–2015 (2016)

  60. 60.

    Badan Perencanaan Pembangunan Daerah Kota Palembang, Lampiran Rancangan Peraturan Daerah Rencana Tata Ruang Wilayah (RTRW) Kota Palembang Tahun 2012–2032 (2012)

  61. 61.

    Map of Palembang City, [Online], https://www.google.com/maps/place/Palembang,+Kota+Palembang,+Sumatera+Selatan/. Accessed 4 February 2019

Download references

Acknowledgements

The authors are grateful to the Ministry of Research Technology and Higher Education of the Republic of Indonesia, Sriwijaya University, and Institut Teknologi Bandung for funding this research (Ristekdikti contract no: 093/SP2H/LT/DRPM/IV/2018 and Ristekdikti contract no: 2/E1/KP.PTNBH/2019).

The United States Agency for International Development (USAID) provided training and mentoring support in the writing of this article, through the Sustainable Higher Education Research Alliances (SHERA) Program of Universitas Indonesia’s Scientific Modelling, Application, Research and Training for City-centered Innovation and Technology (SMART CITY) Project.

The authors are also thankful to M. Fajri Romdhoni and Johannes Adiyanto for the aerial photographs, Raghanu Yudhaji, Istiarani, and the architecture students of Sriwijaya University, Palembang, for the description and confirmation of the map and conditions of the thermal environment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Surjamanto Wonorahardjo.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Triyuly, W., Triyadi, S. & Wonorahardjo, S. Synergising the thermal behaviour of water bodies within thermal environment of wetland settlements. Int J Energy Environ Eng (2020). https://doi.org/10.1007/s40095-020-00355-z

Download citation

Keywords

  • Thermal environment
  • Urban geometry
  • Wetland settlement
  • Indonesia
  • Tropical climate
  • Urban development