Evaluating bioreactor landfill as an energy source

Abstract

Demand for energy has forced people to look for non-traditional energy sources. Biomass energy, mainly municipal solid waste, is emerging as one of the promising sources of energy. The use of landfills as a geothermal source of energy is one of the latest approaches for acquiring energy within the solid waste. In this work, the bioreactor landfill is evaluated as a potential energy source. A lab-scale bioreactor that is equivalent to household size bioreactor was built and thermal energy extraction was investigated. The study indicated that the use of the bioreactor may be considered as an economical source of energy. The study results show that a 2 m3 lab-scale bioreactor can maintain a center temperature higher than 30 °C for a period of 4 months. Also, it was found that the lab-scale bioreactor was able to raise the water temperature up to a stable 3 °C in an open-loop system within 30 min.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Panwar, N., Kaushik, S., Kothari, S.: Role of renewable energy sources in environmental protection: a review. Renew. Sustain. Energy Rev. 15, 1513–1524 (2011)

    Article  Google Scholar 

  2. 2.

    Demirbas, A., Demirbas, I.: Importance of rural bioenergy for developing countries. Energy Conserv. Manag. 48, 2386–2398 (2007)

    Article  Google Scholar 

  3. 3.

    Panoutsou, C.: Socio-economic impacts of energy crops for heat generation in Northern Greece. Energy Policy. 35, 6046–6059 (2007)

    Article  Google Scholar 

  4. 4.

    Goldemberg, J., Coelho, S.: Renewable energy-traditional biomass vs. modern biomass. Energy Policy 32, 711–714 (2004)

    Article  Google Scholar 

  5. 5.

    Cheng, H., Hu, Y.: Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour. Technol. 101, 3816–3824 (2010)

    Article  Google Scholar 

  6. 6.

    Singh, R., Tyagi, V., Allen, T., Ibrahim, M., Kothari, R.: An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew. Sustain. Energy Rev. 15, 4797–4808 (2011)

    Article  Google Scholar 

  7. 7.

    Hossain, H., Hossain, Q., Monir, Md, Ahmed, Md: Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: revisited. Renew. Sustain. Energy Rev. 39, 35–41 (2014)

    Article  Google Scholar 

  8. 8.

    Abu-Qudais, M., Abu-qdais, H.: Energy content of municipal solid waste in Jordan and its potential utilization. Energy Convers. Manag. 41, 983–991 (2000)

    Article  Google Scholar 

  9. 9.

    Rajasekhar, M., Rao, N., Rao, G., Priyadarshini, G., Kumar, N.: Energy generation from municipal solid waste by innovative technologies—plasma gasification. Procedia Mater. Sci. 10, 513–518 (2015)

    Article  Google Scholar 

  10. 10.

    Matsakas, L., Gao, Q., Rova, U., Christakopoulos, P.: Green conversion of municipal solid waste into fuel and chemicals. Electron. J. Biotechnol. 26, 69–83 (2017)

    Article  Google Scholar 

  11. 11.

    Grillo, R.: Energy recycling—landfill waste heat generation and recovery. Curr. Sustain. Renew Energy Rep. 1, 150–156 (2014)

    Google Scholar 

  12. 12.

    Niu, X., Yu, J., Wang, S.: Experimental study on low temperature waste heat thermoelectric generator. J. Power Sources 188, 621–626 (2009)

    Article  Google Scholar 

  13. 13.

    Di Maria, F., Postrioti, L., Micale, C., Sordi, A., Marconi, M.: Energy recovery from low temperature heat produced during aerobic biological treatment. Energy Procedia 45, 81–90 (2014)

    Article  Google Scholar 

  14. 14.

    Yesiller, N., Hanson, J., Kopp, K., Yee, E.: Heat management strategies for MSW landfills. Waste Manag. 56, 246–254 (2016)

    Article  Google Scholar 

  15. 15.

    Smith, M., Aber, J.: Energy recovery from commercial-scale composting as a novel waste management strategy. Appl. Energy 211, 194–199 (2018)

    Article  Google Scholar 

  16. 16.

    Christensen, T., Manfredi, S.: Landfilling: reactor landfills. In: Christensen, T. (ed.) Solid Waste Technology And Management. Wiley, London (2011)

    Google Scholar 

  17. 17.

    O’Leary, P., Tchobanoglous, G.: Landfilling. In: Tchobanoglous, G., Kreith, F. (eds.) Handbook of Solid Waste Management, 2nd edn. McGraw-Hill, New York (2002)

    Google Scholar 

  18. 18.

    Townsend, T., Powell, J., Jain, P., Xu, Q., Tolaymat, T., Reinhart, D.: Landfill air addition. In: Townsend, T. (ed.) Sustainable Practices for Landfill Design and Operation. Waste Management Principles and Practice. Springer, New York (2015)

    Google Scholar 

  19. 19.

    Moqbel, S., Reinhart, D., Chen, R.: Factors influencing spontaneous combustion of solid waste. Waste Manag. 30, 1600–1607 (2010)

    Article  Google Scholar 

  20. 20.

    Smith, M., Aber, J., Rynk, R.: Heat recovery from composting: a comprehensive review of system design, recovery rate, and utilization. Compost Sci. Util. 25(sup1), S11–S22 (2017)

    Article  Google Scholar 

  21. 21.

    Brown, G.: Heat recovery, food production at Boston composting facility. BioCycle. 56, 39–40 (2017)

    Google Scholar 

  22. 22.

    Faitli, J., Magyar, T., Erdelyi, A., Muranyi, A.: Characterization of thermal properties of municipal solid waste landfills. Waste Manag. 36, 213–221 (2015)

    Article  Google Scholar 

  23. 23.

    Nocko, L., McCartney, J., Gupta, R., Botelho, K., Morris, J.: Heat extraction from municipal solid waste landfills. In: Proceedings of 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12–14 (2018)

  24. 24.

    Coccia, C., Gupta, R., Morris, J., McCartney, J.: Municipal solid waste landfills as geothermal heat sources. Renew. Sustain. Energy Rev. 19, 463–474 (2013)

    Article  Google Scholar 

  25. 25.

    Hanson, J., Yesiller, N., Onnen, M., Liu, W., Oettle, N., Marinos, J.: Development of numerical model for predicting heat generation and temperatures in MSW landfills. Waste Manag. 33, 1993–2000 (2013)

    Article  Google Scholar 

  26. 26.

    Erses, A., Onay, T., Yenigun, O.: Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresour. Technol. 99, 5418–5426 (2008)

    Article  Google Scholar 

  27. 27.

    Warith, M.: Bioreactor landfills: experimental and field results. Waste Manag. 22, 7–17 (2002)

    Article  Google Scholar 

  28. 28.

    Swati, M., Karthikeyan, O., Joseph, K., Nagendran, R.: Landfill bioreactor: a biotechnological solution for waste management. J. Sci. Ind. Res. 66, 670–674 (2007)

    Google Scholar 

  29. 29.

    Jain, P., Powell, J., Townsend, T., Reinhart, D.: Air permeability of waste in a municipal solid waste landfill. J. Environ. Eng. 131, 1565–1573 (2005)

    Article  Google Scholar 

  30. 30.

    Powell, J., Townsend, T., Zimmerman, J.: Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nat. Clim. Change 6, 162–165 (2016)

    Article  Google Scholar 

  31. 31.

    Hashisho, J., El-Fadel, M.: Determinants of optimal aerobic bioreactor landfilling for the treatment of the organic fraction of municipal waste. Crit. Rev. Environ. Sci. Technol. 44, 1865–1891 (2014)

    Article  Google Scholar 

  32. 32.

    Hanson, J., Yesiller, N., Oettle, N.: Spatial and temporal temperature distribution in municipal solid waste landfills. J. Environ. Eng. 136(8), 804–814 (2010)

    Article  Google Scholar 

Download references

Funding

This project was supported by the Deanship of Scientific Research at the University of Jordan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shadi Moqbel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moqbel, S. Evaluating bioreactor landfill as an energy source. Int J Energy Environ Eng 12, 23–30 (2021). https://doi.org/10.1007/s40095-020-00350-4

Download citation

Keywords

  • Solid waste
  • Renewable energy
  • Aerobic degradation
  • Geothermal energy