Review of the advances and applications of variable refrigerant flow heating, ventilating, and air-conditioning systems for improving indoor thermal comfort and air quality


The maintenance of a healthy and comfortable indoor environment consumes a significant amount of energy in the built environment. Heating, ventilating, and air-conditioning (HVAC) systems can provide a healthy indoor thermal environment and air quality. Variable refrigerant flow (VRF) HVAC systems utilize a refrigerant to transfer heat from a heat source to a heat sink by changing its phase from liquid to gas and from gas to liquid. VRF HVAC systems are becoming popular due to their flexible operation, particularly under dynamic thermal loading and weather conditions. The advances of the VRF HVAC system include the utilization of new materials and concepts that make the system robust and dynamic, give it high heat transfer capabilities, allow it to have a compact design, and make it energy efficient. Due to its energy efficiency, indoor thermal comfort and quality, and versatile applications, the VRF HVAC system is one of the most viable alternatives to conventional HVAC systems. As such, extensive efforts in the research, development, testing, and application of these systems have been made. Despite these advancements and the demand for high-quality, energy-efficient, and comfortable indoor thermal environments, VRF HVAC systems still require further development, which is the topic of this review paper.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Enteria, N., Awbi, H., Santamouris, M.: Perspective and advances of houses and buildings in hot and humid regions. In: Enteria, N., Awbi, H., Santamouris, M. (eds.) Building in Hot and Humid Regions Historical Perspective and Technological Advances. Springer, Singapore (2020)

    Google Scholar 

  2. 2.

    Enteria, N., Sawachi, T.: Air conditioning and ventilation systems in hot and humid regions. In: Enteria, N., Awbi, H., Santamouris, M. (eds.) Building in Hot and Humid Regions Historical Perspective and Technological Advances. Springer, Singapore (2020)

    Google Scholar 

  3. 3.

    Surahman, U., Kubota, T.: Household energy consumption and CO2 emissions for residential buildings in Jakarta and Bandung of Indonesia. In: Kubota, T., Rijal, H., Takaguchi, H. (eds.) Sustainable Houses and Living in the Hot-Humid Climates of Asia. Springer, Singapore (2018)

    Google Scholar 

  4. 4.

    Darwish, M.A.: Building air conditioning system using fuel cell: case study for Kuwait. Appl. Therm. Eng. 27, 2869–2876 (2007)

    Google Scholar 

  5. 5.

    Solgi, E., Kari, B.M., Fayaz, R., Taheri, H.: The impact of phase change materials assisted night purge ventilation on the indoor thermal conditions of office buildings in hot-arid climates. Energy Build. 150, 488–497 (2017)

    Google Scholar 

  6. 6.

    Wolkof, P.: Indoor air humidity, air quality, and health—an overview. Int. J. Hyg. Environ. Health 221, 376–390 (2018)

    Google Scholar 

  7. 7.

    Xiong, J., Lian, Z., Zhou, X., You, J., Lin, Y.: Effects of temperature steps on human health and thermal comfort. Build. Environ. 94, 144–154 (2015)

    Google Scholar 

  8. 8.

    Wargocki, P., Bakó-Biró, Z., Clausen, G., Fanger, P.O.: Air quality in a simulated office environment as a result of reducing pollution sources and increasing ventilation. Energy Build. 34, 775–783 (2002)

    Google Scholar 

  9. 9.

    Bayer, C.W., Crow, S.A., Fisher, J.: Causes of indoor air quality problems in schools. Summary of Scientific Research, Energy Division Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6285, US Department of Energy, USA (2000)

  10. 10.

    Tham, K.W.: Indoor air quality and its effects on humans—a review of challenges and developments in the last 30 years. Energy Build. 130, 637–650 (2016)

    Google Scholar 

  11. 11.

    Carrer, P., Wargocki, P., Fanetti, A., Bischof, W., De Oliveira Fernandes, E., Hartmann, T., Kephalopoulos, S., Palkonen, S., Seppanen, O.: What does the scientific literature tell us about the ventilation—health relationship in public and residential buildings? Build. Environ. 94, 273–286 (2015)

    Google Scholar 

  12. 12.

    Burge, S.: Sick building syndrome. Occup. Environ. Med. 61, 185–190 (2004)

    Google Scholar 

  13. 13.

    Shayegan, Z., Haghighat, F., Lee, C.S.: Photocatalytic oxidation of volatile organic compounds for indoor environment applications: three different scaled setups. Chem. Eng. J. 357, 533–546 (2019)

    Google Scholar 

  14. 14.

    Al-Awadi, L., Al-Rashidi, M., Pereira, B., Pillai, A., Khan, A.: Indoor air quality in printing press in Kuwait. Int. J. Environ. Sci. Technol. 6, 2643–2656 (2019)

    Google Scholar 

  15. 15.

    Baurès, E., Blanchard, O., Mercier, F., Surget, E., Cann, P., Rivier, A., Gangneux, J.P., Florentin, A.: Indoor air quality in two French hospitals: measurement of chemical and microbiological contaminants. Sci. Total Environ. 642, 168–179 (2018)

    Google Scholar 

  16. 16.

    Wolkoff, P.: Indoor air pollutants in office environments: assessment of comfort, health, and performance. Int. J. Hyg. Environ. Health 216, 371–394 (2013)

    Google Scholar 

  17. 17.

    Nehr, S., Hösen, E., Tanabe, S.: Emerging developments in the standardized chemical characterization of indoor air quality. Environ. Int. 98, 233–237 (2017)

    Google Scholar 

  18. 18.

    Park, D.U., Yeom, J.K., Lee, W.J., Lee, K.M.: Assessment of the levels of airborne bacteria, gram-negative bacteria and fungi in hospital lobbies. Int. J. Environ. Res. Public Health 10, 541–555 (2013)

    Google Scholar 

  19. 19.

    Verde, S.C., Almeida, S.M., Matos, J., Guerreiro, D., Meneses, M., Faria, T., Botelho, D., Santos, M., Viegas, C.: Microbiological assessment of indoor air quality at different hospital sites. Res. Microbiol. 166, 557–563 (2015)

    Google Scholar 

  20. 20.

    Zhou, X., Yan, D., An, J.J., Hong, T.Z., Shi, X., Jin, X.: Comparative study of air-conditioning energy use of four office buildings in China and USA. Energy Build. 169, 344–352 (2018)

    Google Scholar 

  21. 21.

    Ben-David, T., Rackes, A., Waring, M.S.: Alternative ventilation strategies in US offices: saving energy while enhancing work performance, reducing absenteeism, and considering outdoor pollutant exposure tradeoffs. Build. Environ. 116, 140–157 (2017)

    Google Scholar 

  22. 22.

    Melikov, A.K., Kaczmarczyk, J.: Air movement and perceived air quality. Build. Environ. 47, 400–409 (2012)

    Google Scholar 

  23. 23.

    Cao, S.J., Zhu, D.H., Yang, Y.B.: Associated relationship between ventilation rates and indoor air quality. RSC Adv 6, 111427–111435 (2016)

    Google Scholar 

  24. 24.

    Persily, A.: Challenges in developing ventilation and indoor air quality standards: the story of ASHRAE Standard 62. Build. Environ. 91, 61–69 (2015)

    Google Scholar 

  25. 25.

    Pichat, P.: A brief survey of the practicality of using photocatalysis to purify the ambient air (indoors or outdoors) or air effluents. Appl. Catal. B 245, 770–777 (2019)

    Google Scholar 

  26. 26.

    Wu, W., Skye, H.M., Domanski, P.A.: Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings. Appl. Energy 212, 577–591 (2018)

    Google Scholar 

  27. 27.

    Goetzel, W.: Variable refrigerant flow systems. ASHRAE J. 49, 24–31 (2007)

    Google Scholar 

  28. 28.

    Afshari, F., Comakli, O., Karagoz, S., Zavaragh, H.G.: A thermodynamic comparison between heat pump and refrigeration device using several refrigerants. Energy Build. 168, 272–283 (2018)

    Google Scholar 

  29. 29.

    Aynur, T.N.: Variable refrigerant flow systems: a review. Energy Build. 42, 1106–1112 (2010)

    Google Scholar 

  30. 30.

    Vinoth kanna, I., Subramani, K.: Study of future refrigerant for vapor compression refrigeration systems. In: Chandrasekhar, U., Yang, L.J., Gowthaman, S. (eds) Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (2019).

  31. 31.

    Arpagaus, C., Bless, F., Schiffmann, J., Bertsch, S.S.: Multi-temperature heat pumps: a literature review. Int. J. Refrig. 69, 437–465 (2016)

    Google Scholar 

  32. 32.

    Hastbacka, M., Dieckmann, J., Bouza, A.: Small high speed: centrifugal compressors. ASHRAE J. 55, 63–64 (2013)

    Google Scholar 

  33. 33.

    Kim, D., Cox, S.J., Cho, H., Im, P.: Model calibration of a variable refrigerant flow system with a dedicated outdoor air system: a case study. Energy Build. 158, 884–896 (2018)

    Google Scholar 

  34. 34.

    Hashimoto, A., Ukai, M., Furuhashi, Y., Yasuda, K., Nobe, T.: Operational status evaluation of integrated hybrid VRF system. In: 2018 ECOS 2018—Proceedings of the 31st International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, June 17–21, 2018, Guimaraes, Portugal

  35. 35.

    Luyben, W.L.: Control of compression refrigeration processes with superheat or saturated boiling. Chem. Eng. Process. Process Intensif. 138, 97–110 (2019)

    Google Scholar 

  36. 36.

    Lee, J.H., Im, P.J., Song, Y.H.: Field test and simulation evaluation of variable refrigerant flow systems performance. Energy Build. 158, 1161–1169 (2018)

    Google Scholar 

  37. 37.

    Zhai, Z.A., Rivas, J.: Promoting variable refrigerant flow system with a simple design and analysis tool. J. Build. Eng. 15, 218–228 (2018)

    Google Scholar 

  38. 38.

    Rozgus, A.: Is VRF right for your next project? Variable refrigerant flow (VRF) systems can be specified into a variety of buildings, especially those that require flexibility. Consult. Specif. Eng. 52, 34–36 (2015)

    Google Scholar 

  39. 39.

    Zhang, Y., Wei, Z., Long, E., Zhang, X., Guo, S.: Outdoor air thermal plume simulation of layer-based VRF air conditioners in high-rise buildings. Energy Procedia 142, 3787–3792 (2017)

    Google Scholar 

  40. 40.

    Enteria, N., Yamaguchi, H., Miyata, M., Sawachi, T., Kuwasawa, Y.: Performance evaluation of the variable refrigerant flow (VRF) air-conditioning system subjected to partial and unbalanced thermal loadings. J. Therm. Sci. Technol. 11, JTST0013 (2016)

    Google Scholar 

  41. 41.

    Singleton, J., Schmidt, D., Bradshaw, C.R.: Control and commissioning of a hot-gas bypass compressor load stand for testing light-commercial compressors on low-GWP refrigerants. Int. J. Refrig. 112, 82–89 (2020)

    Google Scholar 

  42. 42.

    Cheng, F.Y., Cui, C., Zhang, X., Cai, W.J., Ge, Y., Gao, W.G., Su, Y.S., Mao, T.: A robust air balancing method for dedicated outdoor air system. Energy Build. 202, 10938 (2019)

    Google Scholar 

  43. 43.

    Cheng, Y., Zhang, S., Huan, C., Oladokun, M.O., Lin, Z.: Optimization on fresh outdoor air ratio of air conditioning system with stratum ventilation for both targeted indoor air quality and maximal energy saving. Build. Environ. 147, 11–22 (2019)

    Google Scholar 

  44. 44.

    Park, D.Y., Yun, G., Kim, K.S.: Experimental evaluation and simulation of a variable refrigerant-flow (VRF) air-conditioning system with outdoor air processing unit. Energy Build. 146, 122–140 (2017)

    Google Scholar 

  45. 45.

    Kim, W., Jeon, S.W., Kim, Y.: Model-based multi-objective optimal control of a VRF (variable refrigerant flow) combined system with DOAS (dedicated outdoor air system) using genetic algorithm under heating conditions. Energy 107, 196–204 (2016)

    Google Scholar 

  46. 46.

    Sirimanna, S., Min, B.H., Zhang, X.L., Yu, Y.X., Yi, X., Haran, K., Jadric, I., Heisey, M., Kane, A., Schreiber, J.: A trade study on motor types for large HVAC systems with integrated motor-compressors. In: 2019 IEEE International Electric Machines and Drives Conference, May 12–15, 2019, San Diego, California, USA

  47. 47.

    Zaman, R.I., Hussain, A.K.M.I.: Optimization of small window type air conditioner. In: IEEE 3rd International Conference on Communication Software and Networks, May 27–29, 2011, Xi'an, China

  48. 48.

    Liu, H.W., Zhou, Q.H., Zhao, H.B., Wang, P.F.: Experiments and thermal modeling on hybrid energy supply system of gas engine heat pumps and organic Rankine cycle. Energy Build. 87, 226–232 (2015)

    Google Scholar 

  49. 49.

    López-Belchí, A.: Assessment of a mini-channel condenser at high ambient temperatures based on experimental measurements working with R134a, R513A and R1234yf. Appl. Therm. Eng. 155, 341–353 (2019)

    Google Scholar 

  50. 50.

    Srinivasa Rao, T., Dilipkumar, K., Appa Rao, K.: Refrigeration system performance by inserting twisted strip in condenser along with liquid suction heat exchanger. Int. J. Innov. Technol. Explor. Eng. 8, 156–159 (2019)

    Google Scholar 

  51. 51.

    Li, K., Lan, J., Zhou, G.L., Tang, Q.T., Cheng, Q., Fang, Y.D., Su, L.: Investigation on the influence of refrigerant charge amount on the cooling performance of air conditioning heat pump system for electric vehicles. J. Therm. Sci. 28, 294–305 (2019)

    Google Scholar 

  52. 52.

    Zhao, D.Y., Zhang, X., Zhong, M.: Variable evaporating temperature control strategy for VRV system under part load conditions in cooling mode. Energy Build. 91, 180–186 (2015)

    Google Scholar 

  53. 53.

    Yang, Z., Pollock, D.T., Wen, J.T.: Model predictive control of vapor compression cycle for large transient heat flux cooling. In: 2016 American Control Conference, July 6–8, 2016, Boston, MA, USA

  54. 54.

    Jamison, T.L., Stout, C.A.: Development and evaluation of copper tube and fittings used in R-410A applications. ASHRAE Trans. 117, 725–734 (2011)

    Google Scholar 

  55. 55.

    Lopes, C.A.: How DFV process can improve split AC installation process. In: 51st Annual Conference of SAVE International, June 6–9, 2011, Portland, Oregon, USA

  56. 56.

    Yin, X.H., Li, S.Y.: Model predictive control for vapor compression cycle of refrigeration process. Int. J. Autom. Comput. 15, 707–715 (2018)

    Google Scholar 

  57. 57.

    Bejarano, G., Alfaya, J.A., Rodríguez, D., Morilla, F., Ortega, M.G.: Benchmark for PID control of refrigeration systems based on vapour compression. In: 3rd IFAC Conference on Advances in Proportional Integral-Derivative Control, Ghent, Belgium, May 9–11, 2018, pp. 497–502

  58. 58.

    Rasmussen, B.P., Price, C., Koeln, J., Keating, B., Alleyne, A.: HVAC system modeling and control: vapor compression system modeling and control. In: Wen, J., Mishra, S. (eds.) Intelligent Building Control Systems, Advances in Industrial Control. Springer, Cham (2018)

    Google Scholar 

  59. 59.

    Tello-Oquendo, F.M., Navarro-Peris, E., Barceló-Ruescas, F., Gonzálvez-Maciá, J.: Semi-empirical model of scroll compressors and its extension to describe vapor-injection compressors. Model description and experimental validation. Int. J. Refrig. 106, 308–326 (2019)

    Google Scholar 

  60. 60.

    Li, Z., Liang, K., Jiang, H.: Thermodynamic analysis of linear compressor using R1234yf. Int. J. Refrig. 104, 530–539 (2019)

    Google Scholar 

  61. 61.

    Liang, K.: A review of linear compressors for refrigeration. Int. J. Refrig. 84, 253–273 (2017)

    Google Scholar 

  62. 62.

    Santos, C.J., Dutra, T., Deschamps, C.J.: Scrutinizing the sources of inefficiencies in the piston-cylinder clearance of an oil-free linear compressor. Int. J. Refrig. 104, 513–520 (2019)

    Google Scholar 

  63. 63.

    Shin, M., Na, S., Lee, J., Min, B., Choi, G.: Model analysis of a novel compressor with a dual chamber for high-efficiency systems. Appl. Therm. Eng. 158, 113717 (2019)

    Google Scholar 

  64. 64.

    Kang, D., Jeong, J.H., Ryu, B.: Heating performance of a VRF heat pump system incorporating double vapor injection in scroll compressor. Int. J. Refrig. 96, 50–62 (2018)

    Google Scholar 

  65. 65.

    Kermani, N.A., Madsen, J.T., Heerup, C., Elmegaard, B.: Performance enhancement of vapor compression heat pumps by a cooled compression cycle. In: 13th IIR-Gustav Lorentzen Conference on Natural Refrigerants, June 18–20, 2018, Valencia, Spain.

  66. 66.

    Aung, Z.T., Mon, M.S., Nu, S.S.:Theoretical investigation of energy saving for vapour compression air conditioning system by using solar thermal energy. In: 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 28 June–1 July 2016, Chiang Mai, Thailand, 7561488

  67. 67.

    Mateu-Royo, C., Navarro-Esbrí, J., Mota-Babiloni, A., Molés, F., Amat-Albuixech, M.: Experimental exergy and energy analysis of a novel high-temperature heat pump with scroll compressor for waste heat recovery. Appl. Energy 253, 113504 (2019)

    Google Scholar 

  68. 68.

    He, Z., Yang, X., Li, D., Wu, W.: Dynamic characteristics of a swing compressor for an air conditioning system at different discharge pressures. Int. J. Refrig. 112, 125–135 (2020)

    Google Scholar 

  69. 69.

    Mojiri, A., Mikel, M., Barber, T.: Goemetry of wrap profiles in co-rotating scroll compressors. Int. J. Refrig. 106, 327–337 (2019)

    Google Scholar 

  70. 70.

    Lin, J., Lian, Y., Wu, J.: Numerical investigation on vapor-liquid two-phase compression in the cylinder of rotary compressors. Appl. Therm. Eng. 170, 115022 (2020)

    Google Scholar 

  71. 71.

    Jiang, H., Li, Z., Liang, K.: Performance of a linear refrigeration compressor with small clearance volume. Int. J. Refrig. 109, 105–113 (2020)

    Google Scholar 

  72. 72.

    Dontha, S., Chavan, D., Barve, S., Rumde, S., Chokkakula, K.: Design and analysis of air-cooled fin and tube heat exchanger with smaller diameter micro finned tubes using R32 in replacement of R410A. Int. J. Recent Technol. Eng. 8, 2485–2489 (2019)

    Google Scholar 

  73. 73.

    Santosa, I.M.C., Gowreesunker, B.L., Tassou, S.A., Tsamos, K.M., Ge, Y.: Investigations into air and refrigerant side heat transfer coefficients of finned-tube CO2 gas coolers. Int. J. Heat Mass Transf. 107, 168–180 (2017)

    Google Scholar 

  74. 74.

    Abdullah, Z., Phuoc Huynh, P.B., Idris, A.: CFD-simulation of a heat-pipe-heat-exchanger effect on a tubular air-cooled condenser. In: ASME 2016 International Mechanical Engineering Congress and Exposition, November 11–17, 2016, Phoenix, Arizona, USA, 6A-2016

  75. 75.

    Sazhin, I.A.: Enhancing heat transfer in two-phase refrigerant flow in condenser of refrigeration unit. J. Phys. Conf. Ser. 1128, 012042 (2018)

    Google Scholar 

  76. 76.

    Salem, M.R., El-Gammal, H.A., Abd-Elaziz, A.A., Elshazly, K.M.: Study of the performance of a vapor compression refrigeration system using conically coiled tube-in-tube evaporator and condenser. Int. J. Refrig. 99, 393–407 (2019)

    Google Scholar 

  77. 77.

    Hua, N., Xi, H., Xu, R.J., Chen, Y., Wang, H.S.: Numerical simulation of multi-pass parallel flow condensers with liquid–vapor separation. Int. J. Heat Mass Transf. 142, 118469 (2019)

    Google Scholar 

  78. 78.

    Dewangan, A.K., Kumar, A., Kumar, R.: Experimental study of nucleate pool boiling of R-134a and R-410a on a porous surface. Heat Transf. Eng. 40, 1249–1258 (2019)

    Google Scholar 

  79. 79.

    Singh, S., Kukreja, R.: Experimental heat transfer coefficient during condensation of R-410A in horizontal micro-fin tubes. J. Phys. Conf. Ser. 1240, 012052 (2019)

    Google Scholar 

  80. 80.

    Wang, Y., Zhang, J., Ma, Z.: Experimental study of pool boiling on a novel reentrant cavity tube surface with R134a. Int. J. Heat Mass Transf. 135, 124–130 (2019)

    Google Scholar 

  81. 81.

    Okbaz, A., Sökücü, M.H., Onbasioglu, H., Olcay, A.B.: Experimental investigation of evaporators with smooth and inner grooved tubes using CO2 as a refrigerant. In: 8th Conference on Ammonia and CO2 Refrigeration Technology, April 11–13, 2019, Ohrid, North Macedonia

  82. 82.

    Chien, L.H., Hwang, H.L.: An experimental study of boiling heat transfer enhancement of mesh-on-fin tubes. J. Enhanc. Heat Transf. 19, 75–86 (2012)

    Google Scholar 

  83. 83.

    Donelli, P., Picoltrini, B., Donelli, L.: How coatings contribute to energy saving and environmental preservation while protecting from corrosion. Metall. Ital. 104, 5–12 (2012)

    Google Scholar 

  84. 84.

    Zhu, L.Q., Chen, X.: Analysis of micro-channel heat exchanger as condenser in the application of commercial air-conditioning system. In: 6th Asian Conference on Refrigeration and Air Conditioning (ACRA 2012), August 26–28, 2012, Xi’an, China

  85. 85.

    Newell, B., Long, A., Newell, T.: A microchannel evaporator for domestic refrigerators. ASHRAE Trans. 117, 108–115 (2011)

    Google Scholar 

  86. 86.

    Tosun, M., Dogan, B., Ozturk, M.M., Erbay, L.B.: Integration of a mini-channel condenser into a household refrigerator with regard to accurate capillary tube length and refrigerant amount. Int. J. Refrig. 98, 428–435 (2019)

    Google Scholar 

  87. 87.

    Kwak, Y., Hwang, S., Jeong, J.H.: Effect of part load operating conditions of an air conditioner on the number of refrigerant paths and heat transfer performance of a condenser. Energy Convers. Manag. 203, 112257 (2020)

    Google Scholar 

  88. 88.

    Moghaddam, H.A., Sarmadian, A., Shafaee, M., Enayatollahi, H.: Flow pattern maps, pressure drop and performance assessment of horizontal tubes with coiled wire inserts during condensation of R-600a. Int. J. Heat Mass Transf. 148, 119062 (2020)

    Google Scholar 

  89. 89.

    Sajadi, B., Soleimani, M., Akhavan-Behadadi, M.A., Hadadi, E.: The effect of twisted tape inserts on heat transfer and pressure drop of R1234yf condensation flow: An experimental study. Int. J. Heat Mass Transf. 146, 118890 (2020)

    Google Scholar 

  90. 90.

    Kim, K., Jeong, J.H.: Steam condensate behavior and heat transfer performance on chromium-ion-implanted metal surface. Int. J. Heat Mass Transf. 136, 681–691 (2019)

    Google Scholar 

  91. 91.

    Knipper, P., Bertsche, D., Gneiting, R., Wetzel, T.: Experimental investigation of heat and pressure drop during condensation of R134a in multiport flat tubes. Int. J. Refrig. 98, 211–221 (2019)

    Google Scholar 

  92. 92.

    Ribeiro, G.B., Barbosa, J.R.: Use of peripheral fins for R-290 charge reduction in split-type residential air-conditioners. Int. J. Refrig. 106, 1–6 (2019)

    Google Scholar 

  93. 93.

    Rahman, M.M., Kariya, K., Miyara, A.: An experimental study and development of new correlation for condensation heat transfer coefficient of refrigerant inside a multiport minichannel with and without fins. Int. J. Heat Mass Transf. 116, 50–60 (2018)

    Google Scholar 

  94. 94.

    Del Col, D., Bortolin, S., Cavallini, A., Matkovic, M.: Effect of cross sectional shape during condensation in a single square minichannel. Int. J. Heat Mass Transf. 54, 3909–3920 (2011)

    MATH  Google Scholar 

  95. 95.

    Jadhav, P., Agrawal, N.: A comparative study in the straight and a spiral adiabatic capillary tube. Int. J. Ambient Energy 40, 693–698 (2018)

    Google Scholar 

  96. 96.

    Saini, D.K., Baruah, A., Sachdeva, G.: Vapour compression system analysis undergoing expansion in an ejector. J. Phys. Conf. Ser. 1240, 012131 (2019)

    Google Scholar 

  97. 97.

    Alok, P., Sahu, D.: Numerical simulation of capillary tube for selected refrigerants using homogeneous equilibrium model. Int. J. Air Cond. Refrig. 27, 1950001 (2019)

    Google Scholar 

  98. 98.

    Liu, C.H., Wang, D.D., Sun, Z.Y., Chen, L., Shi, J.Y., Chen, J.P.: Effects of charge on the performance of R290 air conditioner with different expansion devices. Appl. Therm. Eng. 140, 498–504 (2018)

    Google Scholar 

  99. 99.

    Peng, J.W., Li, H., Zhang, C.L.: Performance comparison of air-source heat pump water heater with different expansion devices. Appl. Therm. Eng. 99, 1190–1200 (2016)

    Google Scholar 

  100. 100.

    Xi, Y.D., Deng, S.M.: The influences of the operating characteristics of an electronic expansion valve (EEV) on the operational stability of an EEV controlled direct expansion air conditioning system. Int. J. Refrig. 69, 394–406 (2016)

    Google Scholar 

  101. 101.

    Park, Y.C., Kim, Y.C., Min, M.K.: Performance analysis on a multi-type inverter air conditioner. Energy Convers. Manag. 42, 1607–1621 (2001)

    Google Scholar 

  102. 102.

    Maia, A.A.T., de Assis Silva, M., Koury, R.N.N., Machado, L., Eduardo, A.C.: Control of an electronic expansion valve using an adaptive PID controller. In: International Refrigeration and Air Conditioning Conference, July 12–15, 2010, Purdue University, West Lafayette, Indiana, USA

  103. 103.

    Chen, T., Bae, K.J., Kwon, O.K.: Mass flow rate prediction of R1233zd through electronic expansion valves based on ANN and power-law correlation models. Appl. Therm. Eng. 158, 113826 (2019)

    Google Scholar 

  104. 104.

    Knabben, F.T., Melo, C., Hermes, C.J.L.: A study of flow characteristics of electronic expansion valves for household refrigeration applications. Int. J. Refrig. 113, 1–9 (2020)

    Google Scholar 

  105. 105.

    Jiang, D.F., Li, Z.T., Wu, Z.M., Zhang, S.Y.: Fully automatic experiment unit for testing lifetime of heat pump's four-way reversing valve. J. Univ. Shanghai Sci. Technol. 28, 432–436 (2006)

    Google Scholar 

  106. 106.

    Black, G.D.: Overview of the four-way refrigerant reversing valve. ASHRAE Trans. 93, 1147–1151 (1987)

    Google Scholar 

  107. 107.

    Liu, Z.B., Zhao, F., Zhang, L.F., Zhang, R., Yuan, M., Chi, Y.Y.: Performance of bypass cycle defrosting system using compressor casing thermal storage for air-cooled household refrigerators. Appl. Therm. Eng. 130, 1215–1223 (2018)

    Google Scholar 

  108. 108.

    Pitarch, M., Navarro-Peris, E., Gonzálvez-Maciá, J., Corberán, J.M.: Experimental study of a subcritical heat pump booster for sanitary hot water production using a subcooler in order to enhance the efficiency of the system with a natural refrigerant (R290). Int. J. Refrig. 73, 226–234 (2017)

    Google Scholar 

  109. 109.

    Li, Z., Wang, B., Li, X., Shi, W.: Simulation on effects of subcooler on cooling performance of multi-split variable refrigerant flow systems with different lengths of refrigerant pipeline. Energy Build. 126, 301–309 (2016)

    Google Scholar 

  110. 110.

    Dang, T., Vo, K., Le, C., Nguyen, T.: An experimental study on subcooling process of a transcritical CO2 air conditioning cycle working with microchannel evaporator. J. Therm. Eng. 3, 1505–1514 (2017)

    Google Scholar 

  111. 111.

    Qi, H., Liu, F., Yu, J.: Performance analysis of a novel hybrid vapor injection cycle with subcooler and flash tank for air-source heat pumps. Int. J. Refrig. 74, 540–549 (2017)

    Google Scholar 

  112. 112.

    Ansari, N.A., Arora, A., Manjunath, K.: The effect of eco-friendly refrigerants on performance of vapor compression refrigeration system with dedicated mechanical subcooling. In: Zhang, G., Kaushika, N., Kaushik, S., Tomar, R. (eds.) Advances in Energy and Built Environment. Lecture Notes in Civil Engineering, pp. 43–54. Springer, Singapore (2019)

    Google Scholar 

  113. 113.

    Ansari, M., Bazargan, M.: Using subcooler/superheater heat exchanger in a refrigeration system with R134a refrigerant. In: First International Conference on Energy and Indoor Environment for Hot Climates, February 24–26, 2014, Doha, Qatar, pp. 57–64

  114. 114.

    Wahyu, B.M., Sumeru, K., Azhar, A.A., Henry, N.: Energy savings on automotive air conditioner using liquid-suction heat exchanger subcooler. Appl. Mech. Mater. 554, 256–260 (2014)

    Google Scholar 

  115. 115.

    Xin, D.B., Huang, S.L., Yin, S., Deng, Y.P., Zhang, W.Q.: Experimental investigation on oil-gas separator of air-conditioning systems. Front. Energy 13, 411–416 (2019)

    Google Scholar 

  116. 116.

    Momenifar, M.R., Akhavan-Behabadi, M.A., Nasr, M., Hanafizadeh, P.: Effect of lubricating oil on flow boiling characteristics of R-600a/oil inside a horizontal smooth tube. Appl. Therm. Eng. 91, 62–72 (2015)

    Google Scholar 

  117. 117.

    Ahmadpour, M.M., Akhavan-Behabadi, M.A., Sajadi, B., Salehi-Kohestani, A.: Effect of lubricating oil on condensation characteristics of R600a inside a horizontal U-shaped tube: experimental study. Int. J. Therm. Sci. 145, 106007 (2019)

    Google Scholar 

  118. 118.

    Matsumoto, K., Ohno, K., Yamaguchi, S., Saito, K.: Evaluation of control method of VRF (variable refrigerant flow) system by experimental study and simulation analysis. In: ACRA 2018—9th Asian Conference on Refrigeration and Air-Conditioning, June 10–13, 2018, Sapporo, Japan

  119. 119.

    Elgendy, E., Melike, M., Fatouh, M.: Experimental assessment of a split air conditioner working with R-417A under different indoor and outdoor conditions. Int. J. Refrig. 85, 268–281 (2018)

    Google Scholar 

  120. 120.

    Kim, G., Lee, J., Park, J., Song, S.: Flow visualization and noise measurement of R410A two-phase flow near electric expansion valve for heating cycle of multi-split air-source heat pump. Appl. Therm. Eng. 157, 113712 (2019)

    Google Scholar 

  121. 121.

    Enteria, N., Yamaguchi, H., Miyata, M., Sawachi, T., Kuwasawa, Y.: Performance evaluation of the variable refrigerant flow (VRF) air-conditioning system during the heating-defrosting cyclic operation. J. Therm. Sci. Technol. 12, JTST0035 (2017)

    Google Scholar 

  122. 122.

    Enteria, N., Yamaguchi, H., Miyata, M., Sawachi, T., Kuwasawa, Y.: Performance evaluation of the variable refrigerant flow (VRF) air-conditioning system subjected to different outdoor air temperatures. J. Therm. Sci. Technol. 11, JTST0029 (2016)

    Google Scholar 

  123. 123.

    Tu, Q., Zou, D.Q., Deng, C.M., Zhang, J., Hou, L.F., Yang, M., Nong, G.C., Feng, Y.H.: Investigation on output capacity control strategy of variable refrigerant flow air conditioning system with multi-compressor. Appl. Therm. Eng. 99, 280–290 (2016)

    Google Scholar 

  124. 124.

    Miltiades, C.A.: Your HVAC system can manage its own energy use: advantages of variable refrigerant flow (VRF) zoning systems. Energy Eng. J. Assoc. Energy Eng. 111, 32–40 (2014)

    Google Scholar 

  125. 125.

    Ortega, I., Sieres, J., Cerdeira, F., Álvarez, E., Rodríguez, J.: Performance analysis of a R407C liquid-to-water heat pump: Effect of a liquid–vapor heat exchanger and domestic hot water production. Int. J. Refrig. 101, 125–135 (2019)

    Google Scholar 

  126. 126.

    Marumo, Y., Takeda, T., Ishiguro, S., Tsuchiya, M., Nishizawa, R.: Study on ground source heat pumps that use direct expansion method for hot water supply system. In: ACRA 2018—9th Asian Conference on Refrigeration and Air-Conditioning, June 10–13, 2018, Sapporo, Japan

  127. 127.

    Tu, Q., Feng, Y., Liu, Q., Li, C.Z., Du, P.: Investigation of defrosting control function based on model and sequence diagram. Build. Serv. Eng. Res. Technol. 36, 5–17 (2015)

    Google Scholar 

  128. 128.

    Wang, Z., Wang, F., Ma, Z., Song, M., Fan, W.: Experimental performance analysis and evaluation of a novel frost-free air source heat pump system. Energy Build. 175, 69–77 (2018)

    Google Scholar 

  129. 129.

    Hamad, A.J., Khalifa, A.H.N., Khalaf, D.Z.: The effect of compressor speed variation and vapor injection on the performance of modified refrigeration system. Int. Rev. Mech. Eng. 12, 285–292 (2018)

    Google Scholar 

  130. 130.

    Min, B., Na, S., Choi, G.: Numerical investigation on effects of sub-cooling methods on performance of multi-split variable refrigerant flow systems with bypass and vapor injection techniques. In: ACRA 2018—9th Asian Conference on Refrigeration and Air-Conditioning, June 10–13, 2018, Sapporo, Japan

  131. 131.

    Xu, J., Hrnjaka, P.: Coalescing oil separator for compressors. Int. J. Refrig. 106, 41–53 (2019)

    Google Scholar 

  132. 132.

    Xin, D., Huang, S., Yin, S., Deng, Y., Zhang, W.: Experimental investigation on oil-gas separator of air-conditioning systems. Front. Energy 27, 1–6 (2017)

    Google Scholar 

  133. 133.

    Vithya, P., Sriram, G., Arumugam, S.: Effect of biodegradable refrigeration oil on the tribological behaviour of liner/ring tribo pair material of hermetically sealed compressors. Mater. Today: Proc. 16, 488–495 (2019).

    Article  Google Scholar 

  134. 134.

    Al-Aifan, B., Parameshwaran, R., Mehta, K., Karunakaran, R.: Performance evaluation of a combined variable refrigerant volume and cool thermal energy storage system for air conditioning applications. Int. J. Refrig. 76, 271–295 (2017)

    Google Scholar 

  135. 135.

    Karunakaran, R., Iniyan, S., Goic, R.: Energy efficient fuzzy based combined variable refrigerant volume and variable air volume air conditioning system for buildings. Appl. Energy 87, 1158–1175 (2010)

    Google Scholar 

  136. 136.

    Yan, H.X., Xia, Y.D., Deng, S.M.: Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control. Appl. Energy 207, 294–304 (2017)

    Google Scholar 

  137. 137.

    Yun, G.Y., Lee, J.H., Kim, H.J.: Development and application of the load responsive control of the evaporating temperature in a VRF system for cooling energy savings. Energy Build. 116, 638–645 (2016)

    Google Scholar 

  138. 138.

    Chien, L.H., Tsai, Y.L., Chang, C.H.: A study of pool boiling and falling-film vaporization with R-245fa/oil mixtures on horizontal tubes. Int. J. Heat Mass Transf. 133, 940–950 (2019)

    Google Scholar 

  139. 139.

    Tran, N., Sheng, S.R., Wang, C.C.: An experimental study and empirical correlations to describe the effect of lubricant oil on the nucleate boiling heat transfer performance for R-1234ze and R-134a. Int. Commun. Heat Mass Transf. 97, 78–84 (2018)

    Google Scholar 

  140. 140.

    Yan, G., Peng, L.Q., Wu, S.K.: A study on an online measurement method to determine the oil discharge ratio by utilizing Coriolis mass flow meter in a calorimeter. Int. J. Refrig. 52, 42–50 (2015)

    Google Scholar 

  141. 141.

    Afshari, F., Comakli, O., Lesani, A., Karagoz, S.: Characterization of lubricating oil effects on the performance of reciprocating compressors in air–water heat pumps. Int. J. Refrig. 74, 505–516 (2017)

    Google Scholar 

  142. 142.

    Hanafi, H.S., Amin, Z., Iskandar, R.: Optimization of performance of vapor compression refrigeration system (VCRS) by controlling the motor fan of the evaporator. In: 3rd International Conference on Mechanical Engineering, October 5–6 October 2017, Surabaya, Indonesia.

  143. 143.

    Kang, I., Lee, K.H., Lee, J.H., Moon, J.W.: Artificial neural network-based control of a variable refrigerant flow system in the cooling season. Energies 11, 1643 (2018)

    Google Scholar 

  144. 144.

    Zhu, Y.J., Jin, X.Q., Du, Z.M., Fan, B., Fu, S.J.: Generic simulation model of multi-evaporator variable refrigerant flow air conditioning system for control analysis. Int. J. Refrig. 36, 1602–1615 (2013)

    Google Scholar 

  145. 145.

    Tu, Q., Zhang, L., Cai, W., Guo, X.J., Yuan, X.J., Deng, C.M., Zhang, J.: Control strategy of compressor and sub-cooler in variable refrigerant flow air conditioning system for high EER and comfortable indoor environment. Appl. Therm. Eng. 141, 215–225 (2018)

    Google Scholar 

  146. 146.

    Yun, G.Y., Lee, J.H., Kim, I.: Dynamic target high pressure control of a VRF system for heating energy savings. Appl. Therm. Eng. 113, 1386–1395 (2017)

    Google Scholar 

  147. 147.

    Lin, J.L., Yeh, T.J.: Control of multi-evaporator air-conditioning systems for flow distribution. Energy Convers. Manag. 50, 1529–1541 (2009)

    Google Scholar 

  148. 148.

    Ghute, A., Kulkarni, V.M.: Experimental study of variation in performance parameters of VCR system with & without subcooling of refrigerant by thermoelectric Peltier cooling module. Int. J. Mech. Eng. Technol. 10, 1662–1670 (2019)

    Google Scholar 

  149. 149.

    Baakeem, S.S., Orfi, J., Alabdulkarem, A.: Optimization of a multistage vapor-compression refrigeration system for various refrigerants. Appl. Therm. Eng. 136, 84–96 (2018)

    Google Scholar 

  150. 150.

    Tu, Q., Zhang, L., Cai, W., Guo, X.J., Deng, C.M., Zhang, J., Wang, B.J.: Effects of sub-cooler on cooling performance of variable refrigerant flow air conditioning system. Appl. Therm. Eng. 127, 1152–1163 (2017)

    Google Scholar 

  151. 151.

    Xu, W., Liu, C., Li, A., Li, J., Qiao, B.: Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China. Renew. Energy 146, 2124–2133 (2020)

    Google Scholar 

  152. 152.

    Christodoulides, P., Aresti, L., Florides, G.: Air-conditioning of a typical house in moderate climates with ground source heat pumps and cost comparison with air source heat pumps. Appl. Therm. Eng. 158, 113772 (2019)

    Google Scholar 

  153. 153.

    Xiao, B., He, L., Zhang, S.H., Kong, T.T., Hu, B., Wang, R.Z.: Comparison and analysis on air-to-air and air-to-water heat pump heating systems. Renew. Energy 146, 1888–1896 (2020)

    Google Scholar 

  154. 154.

    Zhang, H., Jiang, L.F., Zheng, W.D., You, S.J., Jiang, T.T., Shao, S.L., Zhu, X.M.: Experimental study on a novel thermal storage refrigerant-heated radiator coupled with air source heat pump heating system. Build. Environ. 164, 106341 (2019)

    Google Scholar 

  155. 155.

    Chung, Y., Na, S.I., Choi, J., Kim, M.S.: Feasibility and optimization of defrosting control method with differential pressure sensor for air source heat pump systems. Appl. Therm. Eng. V 155, 461–469 (2019)

    Google Scholar 

  156. 156.

    Song, M., Wang, Z., Mao, N., Dong, J., Zhang, H.: Defrosting start control strategy optimization for an air source heat pump unit with the frost accumulation and melted frost downwards flowing considered. Sustain. Cities Soc. 46, 101461 (2019)

    Google Scholar 

  157. 157.

    Su, W., Li, H., Sun, B., Li, S., Zhang, X.: Performance investigation on a frost-free air source heat pump system employing liquid desiccant dehumidification and compressor-assisted regeneration based on exergy and exergoeconomic analysis. Energy Convers. Manag. 183, 167–181 (2019)

    Google Scholar 

  158. 158.

    Karacayli, I., Altay, I., Hepbasli, A.: First and second law analyses of wastewater cooled condenser for a refrigeration system. Int. J. Exergy 29, 155–171 (2019)

    Google Scholar 

  159. 159.

    Watanabe, S., Takeda, T., Ishiguro, S., Nuramatsu, N., Okazawa, R.: Thermal performance of underground heat exchanger for ground source heat pump. In: ACRA 2018—9th Asian Conference on Refrigeration and Air-Conditioning, June 10–13, 2018, Sapporo, Japan

  160. 160.

    Lee, J.H., Kim, H., Song, Y.H.: A Study on verification of changes in performance of a water-cooled VRF system with control change based on measuring data. Energy Build. 158, 712–720 (2018)

    Google Scholar 

  161. 161.

    Chang, Y.L., Hseuh, Y.C., Kuan, Y.D., Chiu, Y.W., Wang, Y.H.: Analysis energy consumption and efficiency improvement of water cooled chiller. In: 9th Asian Conference on Refrigeration and Air-Conditioning, June 10–13, 2018, Saporro, Japan

  162. 162.

    Takeda, T., Ishiguro, S., Funatani, S., Ichimiya, K.: Study on heat transport characteristics of ground source heat pumps that use direct expansion system. In: International Conference on Power Engineering (ICOPE-15), November 30–December 4, 2015, Yokohama, Japan

  163. 163.

    Takeda, T., Ishiguro, S., Yoda, O., Okubo, H.: Thermal performance of ground source heat pumps that use direct expansion method using foundation pile. In: International Heat Transfer Conference, August 10–15 2018, Beijing, China

  164. 164.

    Hanuszkiewicz-Drapała, M., Bury, T.: Utilization of the horizontal ground heat exchanger in the heating and cooling system of a residential building. Arch. Thermodyn. 37, 47–72 (2016)

    Google Scholar 

  165. 165.

    Soni, S.K., Pandey, M., Bartaria, V.N.: Energy metrics of a hybrid earth air heat exchanger system for summer cooling requirements. Energy Build. 129, 1–8 (2016)

    Google Scholar 

  166. 166.

    Harby, K., Gebaly, D.R., Koura, N.S., Hassan, M.S.: Performance improvement of vapor compression cooling systems using evaporative condenser: an overview. Renew. Sustain. Energy Rev. 58, 347–360 (2016)

    Google Scholar 

  167. 167.

    Hajidavalloo, E.: Application of evaporative cooling on the condenser of window-air-conditioner. Appl. Therm. Eng. 27, 1937–1943 (2007)

    Google Scholar 

  168. 168.

    Redo, M.A., Jeong, J.S., Giannetti, N., Enoki, K., Yamaguchi, S., Saito, K., Kim, H.Y.: Characterization of two-phase flow distribution in microchannel heat exchanger header for air-conditioning system. Exp. Thermal Fluid Sci. 106, 183–193 (2019)

    Google Scholar 

  169. 169.

    Lee, H.I., Jeong, J.H.: Effect of a drop in working fluid pressure on heat transfer performance during phase change in heat exchanger. Trans. Korean Soc. Mech. Eng. B 42, 251–258 (2018)

    Google Scholar 

  170. 170.

    Mancini, R., Zühlsdorf, B., Aute, V., Markussen, W.B., Elmegaard, B.: Performance of heat pumps using pure and mixed refrigerants with maldistribution effects in plate heat exchanger evaporators. Int. J. Refrig. 104, 390–403 (2019)

    Google Scholar 

  171. 171.

    Parrales, A., Hernández-Pérez, J.A., Flores, O., Hernandez, H., Gómez-Aguilar, J.F., Escobar-Jiménez, R., Huicochea, A.: Heat transfer coefficients analysis in a helical double-pipe evaporator: Nusselt number correlations through artificial neural networks. Entropy 21, 689 (2019)

    Google Scholar 

  172. 172.

    Park, B.R., Choi, E.J., Hong, J., Lee, J.H., Moon, J.W.: Development of an energy cost prediction model for a VRF heating system. Appl. Therm. Eng. 140, 476–486 (2018)

    Google Scholar 

  173. 173.

    Zhang, G.H., Li, X.T., Shi, W.X., Wang, B.L., Cao, Y.: Influence of occupant behavior on the energy performance of variable refrigerant flow systems for office buildings: a case study. J. Build. Eng. 22, 327–334 (2019)

    Google Scholar 

  174. 174.

    Lin, C.M., Liu, H.Y., Tseng, K.Y., Lin, S.F.: Heating, ventilation, and air conditioning system optimization control strategy involving fan coil unit temperature control. Appl. Sci. (Switzerland) 9, 2391 (2019)

    Google Scholar 

  175. 175.

    Wu, X., Gao, J., Wang, H., Fang, L., Olesen, B.W.: Indoor thermal environment and air distribution in a floor-ceiling heating room with mixing or displacement ventilation. J. Sci. Technol. Built Environ. (2019).

    Article  Google Scholar 

  176. 176.

    ANSI/ASHRAE Standard 15-2016. Safety standards for refrigeration systems. American Society of Heating, Refrigerating and Air-conditioning Engineers, USA (2016)

  177. 177.

    Ghani, S., Gamaledin, S.M.A., Rashwan, M.M., Atieh, M.A.: Experimental investigation of double-pipe heat exchangers in air conditioning applications. Energy Build. 158, 801–811 (2018)

    Google Scholar 

  178. 178.

    Nair, V., Parekh, A.D., Tailor, P.R.: Water-based Al2 O3, CuO and TiO2 nanofluids as secondary fluids for refrigeration systems: a thermal conductivity study. J. Braz. Soc. Mech. Sci. Eng. 40, 262 (2018)

    Google Scholar 

  179. 179.

    Subramanian, R., Crowley, K., Morrin, A., Killard, A.J.: A sensor probe for the continuous in situ monitoring of ammonia leakage in secondary refrigerant systems. Anal. Methods 5, 134–140 (2013)

    Google Scholar 

  180. 180.

    Peyyala, A., Sudheer, N.: Effect of insulations on COP in vapor compression refrigeration system. Int. J. Mech. Eng. Technol. 10, 1201–1208 (2019)

    Google Scholar 

  181. 181.

    Ersöz, M.A., Yildiz, A.: Effect of refrigerants on the economical optimum insulation thickness for indoor pipelines of split air conditioning systems. Int. J. Refrig. 64, 51–60 (2016)

    Google Scholar 

  182. 182.

    Peyyala, A., Sudheer, N.: Experimental determination of optimum refrigerant insulation combination in a VCR system using Taguchi method. Int. J. Mech. Prod. Eng. Res. Dev. 9, 439–452 (2019)

    Google Scholar 

  183. 183.

    Deymi-Dashtebayaz, M., Farahnak, M., Moraffa, M., Ghalami, A., Mohammadi, N.: Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems. Heat Mass Transf. 54, 803–812 (2018)

    Google Scholar 

  184. 184.

    Eom, Y.H., Yoo, J.W., Hong, S.B., Kim, M.S.: Refrigerant charge fault detection method of air source heat pump system using convolutional neural network for energy saving. Energy 187, 115877 (2019)

    Google Scholar 

  185. 185.

    Hong, S.B., Yoo, J.W., Kim, M.S.: A theoretical refrigerant charge prediction equation for air source heat pump system based on sensor information. Int. J. Refrig. 104, 335–343 (2019)

    Google Scholar 

  186. 186.

    Shin, S.J., Lee, S.J., Lee, J.H., Lee, S.: Determination of adequate amount of refrigerant for commercial air-conditioning system. J. Korean Soc. Precis. Eng. 36, 443–448 (2019)

    Google Scholar 

  187. 187.

    Nakamura, S., Ishibashi, A., Kato, Y., Tanda, T.: Development of an aluminium flat-tube heat exchanger for packaged air conditioner. In: ACRA 2018—9th Asian Conference on Refrigeration and Air-Conditioning, June 10–13, 2018, Sapporo, Japan

  188. 188.

    Liu, J.Y., Liu, J.H., Chen, H.X., Yuan, Y., Li, Z.F., Huang, R.G.: Energy diagnosis of variable refrigerant flow (VRF) systems: data mining technique and statistical quality control approach. Energy Build. 175, 148–162 (2018)

    Google Scholar 

  189. 189.

    Halbe, C.V., O'Brien, W.F., Cousins, W.T., Sishtla, V.: A numerical analysis of the effects of liquid carryover on the performance of a two-stage centrifugal compressor. In: ASME Turbomachinery Technical Conference and Exposition June 11–15, 2018, Oslo, Norway, V02BT44A028

  190. 190.

    Yoo, J.W., Hong, S.B., Kim, M.S.: Refrigerant leakage detection in an EEV installed residential air conditioner with limited sensor installations. Int. J. Refrig. 78, 157–165 (2017)

    Google Scholar 

  191. 191.

    Makhnatch, P., Mota-Babiloni, A., López-Belchí, A., Khodabandeh, R.: R450A and R513A as lower GWP mixtures for high ambient temperature countries: experimental comparison with R134a. Energy 166, 223–235 (2019)

    Google Scholar 

  192. 192.

    Sheikholeslami, M., Rezaeianjouybari, B., Darzi, M., Shafee, A., Li, Z.X., Nguyeng, T.K.: Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int. J. Heat Mass Transf. 141, 974–980 (2019)

    Google Scholar 

  193. 193.

    Soliman, A.M.A., Abdel Rahman, A.K., Ookawara, S.: Enhancement of vapor compression cycle performance using nanofluids. J. Therm. Anal. Calorim. 135, 1507–1520 (2019)

    Google Scholar 

  194. 194.

    Ande, R., Koppala, R.S.R., Hadi, M.: Experimental investigation on VCR system using nano-refrigerant for COP enhancement. Chem. Eng. Trans. 71, 967–972 (2018)

    Google Scholar 

  195. 195.

    Sheikholeslami, M., Darzi, M., Sadoughi, M.K.: Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int. J. Heat Mass Transf. 122, 643–650 (2018)

    Google Scholar 

  196. 196.

    Alhendal, Y., Gomaa, A., Bedair, G., Kalendar, A.: Thermal performance analysis of low-GWP refrigerants in automotive air-conditioning system. Adv. Mater. Sci. Eng. (2020).

    Article  Google Scholar 

  197. 197.

    Calleja-Anta, D., Nebot-Andres, L., Catalan-Gil, J., Sanchez, D., Cabello, R., Llopis, R.: Thermodynamic screening of alternative refrigerants for R290 and R600a. Results Eng. (2020).

    Article  Google Scholar 

  198. 198.

    Devecioğlu, A.G., Oruç, V.: Retrofitting of R-22 air-conditioning system with R1234ze(E). In: Dincer, I., Colpan, C., Ezan, M. (eds.) Environmentally Benign Energy Solutions.Green Energy and Technology, pp. 87–96. Springer, Cham (2019)

    Google Scholar 

  199. 199.

    Heredia-Aricapa, Y., Belman-Flores, J.M., Mota-Babiloni, A., Serrano-Arellano, J., García-Pabón, J.J.: Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. Int. J. Refrig. 111, 113–123 (2020)

    Google Scholar 

  200. 200.

    Jain, G., Arora, A., Gupta, S.N.: Performance characteristics of a two-stage transcritical N2O refrigeration cycle with vortex tube. Int. J. Ambient Energy 41, 491–499 (2020)

    Google Scholar 

  201. 201.

    Li, H., Gong, X., Xu, W., Li, M., Dang, C.: Effects of climate on the solar-powered R1234ze/CO2 cascade cycle for space cooling. Renew. Energy 153, 870–883 (2020)

    Google Scholar 

  202. 202.

    Longo, G.A., Mancin, S., Righetti, G., Zilio, C., Brown, S.: Assessment of the low-GWP refrigerants R600a, R1234ze(Z) and R1233zd(E) for heat pump and organic Rankine cycle applications. Appl. Therm. Eng. 167, 114804 (2020)

    Google Scholar 

  203. 203.

    Sun, J., Li, W., Cui, B.: Energy and exergy analyses of R513a as a R134a drop-in replacement in a vapor compression refrigeration system. Int. J. Refrig. 112, 348–356 (2020)

    Google Scholar 

  204. 204.

    Wang, T., Liu, X., He, M., Zhang, Y.: Molecular dynamics simulation of thermophysical properties and condensation process of R1233zd(E). Int. J. Refrig. 112, 341–347 (2020)

    Google Scholar 

  205. 205.

    Agarwal, S., Arora, A., Arora, B.B.: Exergy analysis of dedicated mechanically subcooled vapour compression refrigeration cycle using HFC-R134a, HFO-R1234ze and R1234yf. In: Zhang, G., Kaushika, N., Kaushik, S., Tomar, R. (eds.) Advances in Energy and Built Environment. Lecture Notes in Civil Engineering, vol. 36, pp. 23–42. Springer, Singapore (2019)

    Google Scholar 

  206. 206.

    Kosmadakis, G., Neofytou, P.: Investigating the effect of nanorefrigerants on a heat pump performance and cost-effectiveness. Therm. Sci. Eng. Prog. 13, 100371 (2019)

    Google Scholar 

  207. 207.

    Shen, B., Shrestha, S., Abdelaziz, O.: Model validations for low-global warming potential refrigerants in mini-split air-conditioning units. Sci. Technol. Built Environ. 22, 1254–1262 (2016)

    Google Scholar 

  208. 208.

    Loistl, F., Schweigler, C.: Integration of a latent heat storage in VRF systems for heating and cooling with enhanced flexibility and efficiency. In: 24th IIR International Congress of Refrigeration, August 16–22, 2015, Yokohama, Japan

  209. 209.

    Jiang, Y., Ge, T.S., Wang, R.Z., Huang, Y.: Experimental investigation on a novel temperature and humidity independent control air conditioning system—part I: cooling condition. Appl. Therm. Eng. 73, 784–793 (2014)

    Google Scholar 

  210. 210.

    Enteria, N., Mizutani, K., Monma, Y., Akisaka, T., Okazaki, N.: Experimental evaluation of the new solid desiccant heat pump system in Asia-Pacific climatic condition. Appl. Therm. Eng. 31, 243–257 (2011)

    Google Scholar 

  211. 211.

    Navarro-Esbri, J., Ginestar, D., Belman, J.M., Milian, V., Verdu, G.: Application of a lumped model for predicting energy performance of a variable-speed vapour compression system. Appl. Therm. Eng. 30, 286–294 (2010)

    Google Scholar 

  212. 212.

    Schurt, L.C., Hermes, C.J.L., Neto, A.T.: A model-driven multivariable controller for vapor compression refrigeration systems. Int. J. Refrig. 32, 1672–1682 (2009)

    Google Scholar 

  213. 213.

    Khan, J.R., Zubair, S.M.: Design and performance evaluation of reciprocating refrigeration systems. Int. J. Refrig. 22, 235–243 (1999)

    Google Scholar 

  214. 214.

    Cabello, R., Navarro, J., Torrella, E.: Simplified steady-state modelling of a single stage vapour compression plant. Model development and validation. Appl. Therm. Eng. 25, 1740–1752 (2005)

    Google Scholar 

  215. 215.

    Wang, X., Xia, J., Zhang, X., Shiochi, S., Peng, C., Jiang, Y.: Modeling and experimental analysis of variable refrigerant flow air-conditioning systems. In: 11th International IBSA Conference, July 27–30, 2009, Glasgow, Scotland

  216. 216.

    Singh, V., Aute, V., Radermacher, R.: A heat exchanger model for air-to-refrigerant fin-and-tube heat exchanger with arbitrary fin sheet. Int. J. Refrig. 32, 1724–1735 (2009)

    Google Scholar 

  217. 217.

    Graber, M., Kirches, C., Schloder, J.P., Tegethoff, W.: Nonlinear model predictive control of a vapor compression cycle based on first principle models. IFAC Proc. Vol. 45, 258–263 (2012)

    Google Scholar 

  218. 218.

    Li, B., Allyne, A.G.: A full dynamic model of a HVAC vapor compression cycle interacting with a dynamic environment. In: 2009 American Control Conference, June 10–12, 2009. St. Louis, MO, USA

  219. 219.

    Koury, R.N.N., Machado, L., Ismail, K.A.R.: Numerical simulation of a variable speed refrigeration system. Int. J. Refrig. 24, 192–200 (2001)

    Google Scholar 

  220. 220.

    Ding, G.L.: Recent developments in simulation techniques for vapour-compression refrigeration systems. Int. J. Refrig. 30, 1119–1133 (2007)

    Google Scholar 

  221. 221.

    Hong, T., Sun, K., Zhang, R., Hinokuma, R., Kasahara, S., Yura, Y.: Development and validation of a new variable refrigerant flow system model in EnergyPlus. Energy Build. 117, 399–411 (2016)

    Google Scholar 

  222. 222.

    Radermacher, R., Hwang, Y.: Vapor Compression Heat Pumps with Refrigerant Mixtures. Taylor and Francis Group, Boca Raton (2005)

    Google Scholar 

  223. 223.

    Dincer, I., Rosen, M.A.: Exergy—Energy, Environment and Sustainable Development. Elsevier, Oxford (2013)

    Google Scholar 

  224. 224.

    Dincer, I., Kanoglu, M.: Refrigeration Systems and Applications. Wiley, West Sussex (2010)

    Google Scholar 

  225. 225.

    Padilla, M.: Exergy analysis of the performance of a variable refrigerant flow (VRF) air conditioning system. Int. J. Air Cond. Refrig. 19, 57–68 (2011)

    Google Scholar 

  226. 226.

    Arora, A., Kaushik, S.C.: Theoretical analysis of a vapour compression refrigeration system with R502, R404A and R507A. Int. J. Refrig. 31, 998–1005 (2008)

    Google Scholar 

  227. 227.

    Bayne, P., Miriel, J., Lenat, Y.: Design and simulation of a heat pump for simultaneous heating and cooling using HFC or CO2 as working fluid. Int. J. Refrig. 32, 1711–1723 (2009)

    Google Scholar 

  228. 228.

    Kawase, T., Hashimoto, A., Yasuda, K., Nobe, T.: Energy Performance Evaluation of Hybrid VRF Systems Based on Japanese government-designated method. Accessed 03 Oct 2019

  229. 229.

    Cheung, P.K., Jim, C.Y.: Impacts of air conditioning on air quality in tiny homes in Hong Kong. Sci. Total Environ. 684, 434–444 (2019)

    Google Scholar 

  230. 230.

    Li, Z., Wang, B.L., Li, X.T., Shi, W.X., Zhang, S.L., Liu, Y.H.: Simulation of recombined household multi-split variable refrigerant flow system with split-type air conditioners. Appl. Therm. Eng. 117, 343–354 (2017)

    Google Scholar 

  231. 231.

    Zhang, G.H., Li, X.H., Shi, W.X., Wang, B.L., Li, Z., Cao, Y.: Simulations of the energy performance of variable refrigerant flow system in representative operation modes for residential buildings in the hot summer and cold winter region in China. Energy Build. 174, 414–427 (2018)

    Google Scholar 

  232. 232.

    Hu, M., Xiao, F., Cheung, H.: Identification of simplified energy performance models of variable-speed air conditioners using likelihood ratio test method. Sci. Technol. Built Environ. (2020).

    Article  Google Scholar 

  233. 233.

    Happle, G., Wilhelm, E., Fonseca, J.A., Schlueter, A.: Determining air-conditioning usage patterns in Singapore from distributed, portable sensors. In: CISBAT 2017 International Conference—Future Buildings & Districts—Energy Efficiency from Nano to Urban Scale, September 6–8, 2017. Lausanne, Switzerland

  234. 234.

    Nada, S.A., Said, M.A.: Performance and energy consumptions of split type air conditioning units for different arrangements of outdoor units in confined building shafts. Appl. Therm. Eng. 123, 874–890 (2017)

    Google Scholar 

  235. 235.

    Kani-Sanchez, C., Richman, R.: Incorporating variable refrigerant flow (VRF) heat pump systems in whole building energy simulation—detailed case study using measured data. J. Build. Eng. 12, 314–324 (2017)

    Google Scholar 

  236. 236.

    Yu, X.Q., Yan, D., Sun, K.Y., Hong, T.Z., Zhu, D.D.: Comparative study of the cooling energy performance of variable refrigerant flow systems and variable air volume systems in office buildings. Appl. Energy 183, 725–736 (2016)

    Google Scholar 

  237. 237.

    Zhang, D.L., Zhang, X., Cai, N.: Study on energy saving possibility of digital variable multiple air conditioning system in three office buildings in Shanghai. Energy Build. 75, 23–28 (2014)

    Google Scholar 

  238. 238.

    Zhang, R.P., Sun, K., Hong, T.Z., Yura, Y., Hinokuma, R.: A novel variable refrigerant flow (VRF) heat recovery system model: development and validation. Energy Build. 168, 399–412 (2018)

    Google Scholar 

  239. 239.

    Kim, D.S., Cox, S.J., Cho, H.J., Im, P.J.: Evaluation of energy savings potential of variable refrigerant flow (VRF) from variable air volume (VAV) in the U.S. climate locations. Energy Rep. 3, 85–93 (2017)

    Google Scholar 

  240. 240.

    Özahi, E., Abuşoğlu, A., Kutlar, A.İ., Dağcı, O.: A comparative thermodynamic and economic analysis and assessment of a conventional HVAC and a VRF system in a social and cultural center building. Energy Build. 140, 196–209 (2017)

    Google Scholar 

  241. 241.

    Gamiz, A.G.R., Dewulf, J., De Soete, W., Heirman, B., Dahlin, P., Jurisch, C., Krebser, U., De Meeser, S.: Freeze drying in the biopharmaceutrical industry: an environmental sustainability assessment. Foods Bioprod. Process. 117, 213–223 (2019)

    Google Scholar 

  242. 242.

    Feng, L., Mears, L., Pisu, P., Schulte, J.: Nonlinear parameter estimation in a typical industrial air handler unit. In: ASME 2017 12th International Manufacturing Science and Engineering Conference, June 4–8, 2017. Los Angeles, CA, USA

  243. 243.

    Al-Zboon, K.K., Forton, O.T.: Indoor air quality in steel rolling industries and possible health effects. Environ. Nat. Resour. J. 17, 20–29 (2019)

    Google Scholar 

  244. 244.

    Sweeney, M., Khattar, M., Domitrovic, R.: Efficient cooling and heat recovery with VRF systems in embedded data centers. ASHRAE Journal 61, 42–51 (2019)

    Google Scholar 

  245. 245.

    Genco, A., Viggiano, A., Viscido, L., Sellitto, G., Magi, V.: Dynamic analysis of HVAC for industrial plants with different airflow control systems. Therm. Sci. Eng. Prog. 6, 330–345 (2018)

    Google Scholar 

  246. 246.

    Ana, H.P., Cui, P., Fang, L., Wang, W., Zhao, D., Yuan, W.H.: Study on the performance of heat and mass transfer of cross flow dehumidifier in an industrial plant. Procedia Eng. 205, 1515–1522 (2017)

    Google Scholar 

  247. 247.

    Aynur, T.N., Hwang, Y., Radermacher, R.: Simulation comparison of VAV and VRF air conditioning systems in an existing building for the cooling season. Energy Build. 41, 1143–1150 (2009)

    Google Scholar 

  248. 248.

    Ren, C., Shi, J.C.: Development and application of linear ventilation and temperature models for indoor environmental prediction and HVAC systems control. Sustain. Cities Soc. 51, 101673 (2019)

    Google Scholar 

  249. 249.

    Sun, Y., Sundell, J.: On associations between housing characteristics, dampness and asthma and allergies among children in Northeast Texas. Indoor Built Environ. 22, 678–684 (2013)

    Google Scholar 

  250. 250.

    Aktas, Y.D., Ioannou, I., Altamirano, H., Reeslev, M., D'Ayala, D., May, N., Canales, M.: Surface and passive/active air mould sampling: a testing exercise in a North London housing estate. Sci. Total Environ. 643, 1631–1643 (2018)

    Google Scholar 

  251. 251.

    Cho, J., Park, S., Lim, T., Kim, B.S.: Experimental investigation on hygrothermal behaviour and the surface condensation risk of a data centre. Indoor Built Environ. 26, 1362–1381 (2017)

    Google Scholar 

  252. 252.

    Saab, R., Al Quabeh, H., Hassan, M.I.: Variable refrigerant flow cooling assessment in humid environment using different refrigerants. J. Environ. Manag. 224, 243–251 (2018)

    Google Scholar 

  253. 253.

    Remion, G., Moujalled, B., El Mankibi, M.: Review of tracer gas-based methods for the characterization of natural ventilation performance: comparative analysis of their accuracy. Build. Environ. 160, 106180 (2019)

    Google Scholar 

  254. 254.

    Wang, L., Ma, G., Zhou, F., Liu, Y., Tian, T.: Multicriteria decision-making approach for selecting ventilation heat recovery devices based on the attributes of buildings and the preferences of decision makers. Sustain. Cities Soc. 51, 101753 (2019)

    Google Scholar 

  255. 255.

    Bevilacqua, P., Benevento, F., Bruno, R., Arcuri, N.: Are Trombe walls suitable passive systems for the reduction of the yearly building energy requirements? Energy 185, 554–566 (2019)

    Google Scholar 

  256. 256.

    Totaro, M., Costa, A.L., Casini, B., Profeti, S., Gallo, A., Frendo, L., Porretta, A., Valentini, P., Privitera, G., Baggiani, A.: Microbiological air quality in heating, ventilation and air conditioning systems of surgical and intensive care areas: the application of a disinfection procedure for dehumidification devices. Pathogens (2019).

    Article  Google Scholar 

  257. 257.

    Sheng, Y., Fang, L., Nie, J.H.: Experimental analysis of indoor air quality improvement achieved by using a clean-air heat pump (CAHP) air-cleaner in a ventilation system. Build. Environ. 122, 343–353 (2017)

    Google Scholar 

  258. 258.

    Veysi, R., Heibati, B., Jahangiri, M., Kumar, P., Talib Latif, M., Karimi, A.: Indoor air quality-induced respiratory symptoms of a hospital staff in Iran. Environ. Monit. Assess. (2019).

    Article  Google Scholar 

  259. 259.

    Kausar, M.A., Arif, J.M., Alanazi, S.M.M., Alshmmry, A.M.A., Alzapni, Y.A.A., Alanazy, F.K.B., Shahid, S.M.A., Hossain, A.: Assessment of microbial load in indoor environment of university and hospitals of hail, ksas. Biochem. Cell. Arch. 16, 177–183 (2016)

    Google Scholar 

  260. 260.

    Barbosa, B.P.P., Brum, N.D.C.L.: Validation and assessment of the CFD-0 module of CONTAM software for airborne contaminant transport simulation in laboratory and hospital applications. Build. Environ. 142, 139–152 (2018)

    Google Scholar 

  261. 261.

    Blum, D.H., Xu, N., Norford, L.K.: A novel multi-market optimization problem for commercial heating, ventilation, and air-conditioning systems providing ancillary services using multi-zone inverse comprehensive room transfer functions. Sci. Technol. Built Environ. (2016).

    Article  Google Scholar 

  262. 262.

    Valdez-Castillo, M., Saucedo-Lucero, J.O., Arriaga, S.: Photocatalytic inactivation of airborne microorganisms in continuous flow using perlite-supported ZnO and TiO2. Chem. Eng. J. 374, 914–923 (2019)

    Google Scholar 

  263. 263.

    Cho, H.M., Lee, J., Wi, S., Kim, S.: Field study on indoor air quality of wood remodeled welfare facilities for physical and psychological benefits. J. Clean. Prod. 233, 197–208 (2019)

    Google Scholar 

  264. 264.

    Holøs, S.B., Yang, A., Lind, M., Thunshelle, K., Schild, P., Mysen, M.: VOC emission rates in newly built and renovated buildings, and the influence of ventilation—a review and meta-analysis. Int. J. Vent. 18, 153–166 (2019)

    Google Scholar 

  265. 265.

    Hoseini, S., Rahemi, N., Allahyari, S., Tasbihi, M.: Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries. J. Clean. Prod. 232, 1134–1147 (2019)

    Google Scholar 

  266. 266.

    Shah, P.M., Day, A.N., Davies, T.E., Morgan, D.J., Taylor, S.H.: Mechanochemical preparation of ceria-zirconia catalysts for the total oxidation of propane and naphthalene volatile organic compounds. Appl. Catal. B 253, 331–340 (2019)

    Google Scholar 

  267. 267.

    Norris, C., Fang, L., Barkjohn, K.K., Carlson, D., Zhang, Y., Mo, J., Li, Z., Zhang, J., Cui, X., Schauer, J.J., Davis, A., Black, M., Bergin, M.H.: Sources of volatile organic compounds in suburban homes in Shanghai, China, and the impact of air filtration on compound concentrations. Chemosphere 231, 256–268 (2019)

    Google Scholar 

  268. 268.

    Du, L., Leivo, V., Prasauskas, T., Täubel, M., Martuzevicius, D., Haverinen-Shaughnessy, U.: Effects of energy retrofits on indoor air quality in multifamily buildings. Indoor Air 29, 686–697 (2019)

    Google Scholar 

  269. 269.

    Sun, Y., Hou, J., Cheng, R., Sheng, Y., Zhang, X., Sundell, J.: Indoor air quality, ventilation and their associations with sick building syndrome in Chinese homes. Energy Build. 197, 112–119 (2019)

    Google Scholar 

  270. 270.

    Sheng, Y., Zhang, L., Wang, Y.Q., Fang, L.: Explore energy saving operation strategy: indoor VOCs removal performance of silica gel rotor in clean-air heat pump system at low regeneration air temperature. Energy Build. 202, 109379 (2019)

    Google Scholar 

  271. 271.

    Whyte, H.E., Raillard, C., Subrenat, A., Héquet, V.: Influence of operating parameters on the single-pass photocatalytic removal efficiency of acrylonitrile. J. Photochem. Photobiol. A 382, 111905 (2019)

    Google Scholar 

  272. 272.

    Whyte, H.E., Raillard, C., Subrenat, A., Héquet, V.: Influence of environmental parameters on the photocatalytic oxidation efficiency of acrylonitrile and isoflurane; two operating room pollutants. Build. Environ. 154, 97–106 (2019)

    Google Scholar 

  273. 273.

    Yang, C., Miao, G., Pi, Y., Xia, Q., Wu, J., Li, Z., Xiao, J.: Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem. Eng. J. 15, 1128–1153 (2019)

    Google Scholar 

  274. 274.

    Morina, J., Gandolfo, A., Temime-Roussel, B., Strekowski, R., Brochard, G., Bergé, V., Gligorovski, S., Wortham, H.: Application of a mineral binder to reduce VOC emissions from indoor photocatalytic paints. Build. Environ. 156, 225–232 (2019)

    Google Scholar 

  275. 275.

    Park, S.H., Shin, J.A., Park, H.H., Yi, G.Y., Chung, K.J., Park, H.D., Kim, K.B., Lee, I.S.: Exposure to volatile organic compounds and possibility of exposure to by-product volatile organic compounds in photolithography processes in semiconductor manufacturing factories. Saf. Health Work 2, 210–217 (2011)

    Google Scholar 

  276. 276.

    Persson, J., Wang, T., Hagberg, J.: Indoor air quality of newly built low-energy preschools—are chemical emissions reduced in houses with eco-labelled building materials? Indoor Built Environ. 28, 506–519 (2019)

    Google Scholar 

  277. 277.

    Shi, Y.C., Li, X.F.: Purifier or fresh air unit? A study on indoor particulate matter purification strategies for buildings with split air-conditioners. Building Environ. 131, 1–11 (2018)

    Google Scholar 

  278. 278.

    Yuan, J., Chen, Z., Zhong, L.X., Wang, B.Z.: Indoor air quality management based on fuzzy risk assessment and its case study. Sustain. Cities Soc. 50, 101654 (2019)

    Google Scholar 

  279. 279.

    Chai, S., Sun, X., Dai, Y.: Experimental investigation on a fresh air dehumidification system using heat pump with desiccant coated heat exchanger. Energy 171, 306–314 (2019)

    Google Scholar 

  280. 280.

    Yoon, M.S., Lim, J.H., Qahtani, T.S.M.A.L., Nam, Y.: Experimental study on comparison of energy consumption between constant and variable speed air-conditioners in two different climates. In: ACRA 2018—9th Asian Conference on Refrigeration and Air-Conditioning, June 10–13, 2018, Sapporo, Japan

  281. 281.

    AHRI Standard 1230. Performance rating of variable refrigerant flow (VRF) multi-split air-conditioning and heat pump equipment, American Heating and Refrigerating Institute, USA (2010)

  282. 282.

    ANSI/AHRI Standard 210/240. Performance rating of unitary air-conditioning & air-source heat pump equipment. American Heating and Refrigerating Institute, USA (2008)

  283. 283.

    ASHRAE 116-2010. Methods of testing for rating seasonal efficiency of unitary air-conditioners and heat pumps. American Society of Heating, Refrigerating and Air-conditioning Engineers, USA (2010)

  284. 284.

    AS/NZS 3823. Performance of electrical appliances—air conditioners and heat pumps. Australia and New Zealand Standards (2012)

  285. 285.

    CSN EN 14825. Air conditioners, liquid chilling packages and heat pumps, with electrically driven compressors, for space heating and cooling. Testing and rating at part load conditions and calculation of seasonal performance, British Standard Institution, UK (2018)

  286. 286.

    GB21455-2013. Variable-speed RAC efficiency standards, China National Institute of Standardization, China (2013)

  287. 287.

    ISO 5151. Non-ducted air conditioners and heat pumps—testing and rating for performance, International Organization for Standardization, Switzerland (2017)

  288. 288.

    ISO 16358-1. Air-cooled air conditioners and air-to-air heat pumps—testing and calculating methods for seasonal performance factors—part 1: cooling seasonal performance factor. International Organization for Standardization, Switzerland (2013)

  289. 289.

    JIS C 9612:2013. Room air conditioners, Japanese Standard Organization, Japan (2013).

  290. 290.

    JIS B 8615-1:2013. Non-ducted air conditioners and heat pumps—testing and rating for performance, Japanese Standard Organization, Japan (2013)

  291. 291.

    JIS B 8616:2015. Package air-conditioners. Japanese Standard Organization, Japan (2015)

  292. 292.

    PNS 396-1:1995. Household appliances—EER and labelling requirements—part 1. Bureau of Product Standards, Philippines (1995)

  293. 293.

    PNS/ISO16358-1:2014. Air-cooled air conditioners and air-to-air heat pumps—testing and calculating methods for seasonal performance factors—part 1: cooling seasonal performance factor. Bureau of Product Standards, Philippines (2014)

  294. 294.

    ICF International, Reducing trade barriers for environmental goods and services in APEC economies. Final Report. Asia-Pacific Economic Cooperation (APEC)—Expert Group on Energy Efficiency and Conservation Energy Working Group (2011).

Download references

Author information



Corresponding author

Correspondence to Napoleon Enteria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enteria, N., Cuartero-Enteria, O. & Sawachi, T. Review of the advances and applications of variable refrigerant flow heating, ventilating, and air-conditioning systems for improving indoor thermal comfort and air quality. Int J Energy Environ Eng 11, 459–483 (2020).

Download citation


  • Variable refrigerant flow (VRF)
  • Heating
  • ventilating
  • and air-conditioning (HVAC) system
  • Outdoor environment
  • Indoor environment
  • Air quality