Skip to main content
Log in

A 3D finite element model of degradation phenomena in organic solar devices affected by oxidation

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

In this paper, we present a novel 3D finite element model for analyzing the influence of chemical degradation on organic solar cells (OSC) exposed to electromagnetic radiation in the visible light range. In our model, the degradation defects due to oxidation are represented by oxygen spherical subdomains located within the bulk. Electromagnetic simulations have been carried out for an increasing number of defects and for wavelengths lying within the visible light range. The simulation results have been compared with experimental data showing excellent agreement. This model allows us to evaluate the decrease in electrical power generated by OSCs in relation with the number of defects due to the degradation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abdullah, S.M., Rafique, S., Hamdan, K.S., Sulaiman, K., Taguchi, D., Iwamoto, M.: Mathematical modelling of degradation phenomena in organic solar cells under various fabrication conditions. Org. Electron. 58, 46–52 (2018)

    Article  Google Scholar 

  2. Bonanno, F., Capizzi, G., Coco, S., Napoli, C., Laudani, A., Sciuto, G.L.: Optimal thicknesses determination in a multilayer structure to improve the spp efficiency for photovoltaic devices by an hybrid fem—cascade neural network based approach. In: 2014 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 355–362. IEEE (2014)

  3. Capizzi, G., Lo Sciuto, G., Napoli, C., Shikler, R., Woźniak, M.: Optimizing the organic solar cell manufacturing process by means of afm measurements and neural networks. Energies 11(5), 1221 (2018)

    Article  Google Scholar 

  4. Capizzi, G., Lo Sciuto, G., Napoli, C., Tramontana, E.: A multithread nested neural network architecture to model surface plasmon polaritons propagation. Micromachines 7(7), 110 (2016)

    Article  Google Scholar 

  5. Chen, W., Wang, M., Yang, X., Yin, W.Y., Li, E.: Modeling and simulation of si/pedot: Pss planar heterojunction photovoltaics by finite element method. In: 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), pp. 1–3. IEEE (2017)

  6. Djeddaoui, N., Boukezzi, L., Bessissa, L.: Aging and degradation of organic solar cells using quv accelerated-weathering tester. Trans. Electr. Electron. Mater. 20(3), 189–197 (2019)

    Article  Google Scholar 

  7. Hermenau, M., Riede, M., Leo, K., Gevorgyan, S.A., Krebs, F.C., Norrman, K.: Water and oxygen induced degradation of small molecule organic solar cells. Solar Energy Mater. Solar Cells 95(5), 1268–1277 (2011)

    Article  Google Scholar 

  8. Kaplani, E.: Pv cell and module degradation, detection and diagnostics. In: Renewable Energy in the Service of Mankind Vol II, pp. 393–402. Springer (2016)

  9. Kawano, K., Pacios, R., Poplavskyy, D., Nelson, J., Bradley, D.D., Durrant, J.R.: Degradation of organic solar cells due to air exposure. Solar Energy Mater. Solar Cells 90(20), 3520–3530 (2006)

    Article  Google Scholar 

  10. List, M., Sarkar, T., Perkhun, P., Ackermann, J., Luo, C., Würfel, U.: Correct determination of charge transfer state energy from luminescence spectra in organic solar cells. Nat. Commun. 9(1), 1–8 (2018)

    Article  Google Scholar 

  11. Liu, X., Da, Y., Xuan, Y.: Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells. Opt. Express 25(16), A824–A839 (2017)

    Article  Google Scholar 

  12. Lo Sciuto, G., Capizzi, G., Coco, S., Shikler, R.: Geometric shape optimization of organic solar cells for efficiency enhancement by neural networks. In: Advances on Mechanics, Design Engineering and Manufacturing, pp. 789–796. Springer (2017)

  13. Madogni, V.I., Kounouhéwa, B., Akpo, A., Agbomahéna, M., Hounkpatin, S.A., Awanou, C.N.: Comparison of degradation mechanisms in organic photovoltaic devices upon exposure to a temperate and a subequatorial climate. Chem. Phys. Lett. 640, 201–214 (2015)

    Article  Google Scholar 

  14. Madsen, M.V., Tromholt, T., Böttiger, A., Andreasen, J.W., Norrman, K., Krebs, F.C.: Influence of processing and intrinsic polymer parameters on photochemical stability of polythiophene thin films. Polym. Degrad. Stab. 97(11), 2412–2417 (2012)

    Article  Google Scholar 

  15. Manceau, M., Rivaton, A., Gardette, J.L., Guillerez, S., Lemaître, N.: Light-induced degradation of the p3ht-based solar cells active layer. Solar Energy Mater. Solar Cells 95(5), 1315–1325 (2011)

    Article  Google Scholar 

  16. Mateker, W.R., Sachs-Quintana, I., Burkhard, G.F., Cheacharoen, R., McGehee, M.D.: Minimal long-term intrinsic degradation observed in a polymer solar cell illuminated in an oxygen-free environment. Chem. Mater. 27(2), 404–407 (2015)

    Article  Google Scholar 

  17. Nya, F.T., Touolak, B.T., Ejuh, W.G., Ouédraogo, S., Ndjaka, J.M.: Modeling and degradation of the characteristics of cigs absorbers in the zno/cds/cigs solar cell. Energy Environ. Focus 6(1), 6–14 (2017)

    Article  Google Scholar 

  18. Papež, N., Sobola, D., Škvarenina, L., Škarvada, P., Hemzal, D., Tofel, P., Grmela, L.: Degradation analysis of gaas solar cells at thermal stress. Appl. Surf. Sci. 461, 212–220 (2018)

    Article  Google Scholar 

  19. Rafique, S., Abdullah, S.M., Sulaiman, K., Iwamoto, M.: Layer by layer characterisation of the degradation process in pcdtbt: Pc71bm based normal architecture polymer solar cells. Org. Electron. 40, 65–74 (2017)

    Article  Google Scholar 

  20. Rafique, S., Abdullah, S.M., Sulaiman, K., Iwamoto, M.: Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement. Renew. Sustain. Energy Rev. 84, 43–53 (2018)

    Article  Google Scholar 

  21. Sumaiya, S., El-Shahat, A., Kardel, K.: Multidimensional modelling of organic solar cell. In: 2018 IEEE Global Humanitarian Technology Conference (GHTC), pp. 1–2. IEEE (2018)

  22. Zandi, S., Razaghi, M.: Finite element simulation of perovskite solar cell: a study on efficiency improvement based on structural and material modification. Solar Energy 179, 298–306 (2019)

    Article  Google Scholar 

  23. Zhang, J., Lu, Z., Wang, L.: Precision refractive index measurements of air, \(n_2\), \(o_2\), ar, and \(co_2\) with a frequency comb. Appl. Opt. 47(17), 3143–3151 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Department of Electrical, Electronics and Computer Engineering of Catania’s University for research facilities and support provided within the framework of Departmental Research Program 2016/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia Lo Sciuto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Sciuto, G., Coco, S. A 3D finite element model of degradation phenomena in organic solar devices affected by oxidation. Int J Energy Environ Eng 11, 431–437 (2020). https://doi.org/10.1007/s40095-020-00345-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-020-00345-1

Keywords

Navigation