Dispersion of nanoparticles into the low birefringent nematic liquid crystal: study of optical and electro-optical parameters and its applicability towards liquid crystal displays

Abstract

In the present reported work, TiO2 nanoparticles (NPs) are dispersed into the pure nematic liquid crystal (NLC) in three different concentrations. The used NLC consisted of 4′-(trans, trans-4-alkylbicyclohexyl) carbonates and 4′-(4-(trans, trans-4-alkyl)-4-cyanobicyclohexane, which is an optically sensitive material. Optical parameters like photoluminescence and UV absorbance for this material can be tuned by doping of TiO2 NPs. Study of photoluminescence parameter is crucial for liquid crystalline materials. Therefore, optical and electro-optical parameters are measured here for pure and NP-dispersed NLC system. UV absorbance was found to be decreased for the TiO2-dispersed system when compared to pure NLC. Band gap was also calculated by using Tauc plot method, and it is found to be decreased for the NP-dispersed system. Photoluminescence study revealed that PL intensity increases after the dispersion of NPs into the pure NLC. This is the key output of the present reported work. Response time measurement was measured by Optical Switching method, and it is found to be reduced for NP-dispersed system when compared to pure NLC. Contrast ratio of the NP-dispersed system was also found to be increased. Threshold voltage showed that it decreases after the dispersion of NPs into the pure NLC. Enhanced photoluminescence, fast optical response time and high contrast ratio are the promising results of the present reported work because these parameters have many applications in the liquid crystal displays, opto-electronics devices and photonic devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Chen, P.S., Huang, C.C., Liu, Y.W., Chao, C.Y.: Effect of insulating-nanoparticles addition on ion current and voltage-holding ratio in nematic liquid crystal cells. Appl. Phys. Lett. 90, 211111–211116 (2007)

    ADS  Article  Google Scholar 

  2. 2.

    Chen, W.T., Chen, P.S., Chao, C.Y.: Effect of doped insulating nanoparticles on the electro-optical characteristics of nematic liquid crystals. Jpn. J. Appl. Phys. 48, 015006–015009 (2009)

    ADS  Article  Google Scholar 

  3. 3.

    Hayden, S.C., Allam, N.K., El-Sayed, M.A.: TiO2 nanotube/CdS hybrid electrodes: extraordinary enhancement in the inactivation of Escherichia coli. J. Am. Chem. Soc. 132, 14406–14408 (2010)

    Article  Google Scholar 

  4. 4.

    Ravez, J., Broustera, C., Simon, A.: Lead-free ferroelectric relaxor ceramics in the BaTiO3–BaZrO3–CaTiO3 system. J. Mater. Chem. 9, 1609–1613 (1999)

    Article  Google Scholar 

  5. 5.

    Arshak, A., Arshak, K., Morris, D., Korostynska, O., Jafer, E.: Investigation of TiO2 thick film capacitors for use as strain gauge sensors. Sens. Actuators A Phys. 122, 242–249 (2005)

    Article  Google Scholar 

  6. 6.

    Dutta, S., Patra, A.K., De, S., Bhaumik, A., Saha, B.: Self-assembled TiO2 nanospheres by using a biopolymer as a template and its optoelectronic application. ACS Appl. Mater. Interfaces 4, 1560–1564 (2012)

    Article  Google Scholar 

  7. 7.

    Li, Z., Zhang, H., Zheng, W., Wang, W., Huang, H., Wang, C.: Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J. Am. Chem. Soc. 130, 5036–5037 (2008)

    Article  Google Scholar 

  8. 8.

    Colomer, M.T., Jurado, J.R.: Structural, microstructural, and electrical transport properties of TiO2–RuO2 ceramic materials obtained by polymeric sol–gel route. Chem. Mater. 12, 923–930 (2000)

    Article  Google Scholar 

  9. 9.

    Yan, J., Zhou, F.: TiO2 nanotubes: structure optimization for solar cells. J. Mater. Chem. 21, 9406–9418 (2011)

    Article  Google Scholar 

  10. 10.

    Ghorai, T.K., Biswas, N.: Photodegradation of rhodamine 6G in aqueous solution via SrCrO4 and TiO2 nano-sphere mixed oxides. J. Mater Res Technol 2, 10–17 (2013)

    Article  Google Scholar 

  11. 11.

    Yadav, S.P., Manohar, R., Singh, S.: Effect of TiO2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal. Liq. Cryst. 42, 1095–1101 (2015)

    Article  Google Scholar 

  12. 12.

    Roose, B., Pathak, S., Steiner, U.: Doping of TiO2 for sensitized solar cells. Chem. Soc. Rev. 44, 8326–8349 (2015)

    Article  Google Scholar 

  13. 13.

    Gupta, S.K., Singh, D.P., Manohar, R.: Electrical and polarization behaviour of titania nanoparticles doped ferroelectric liquid crystal. Adv. Mater. Lett. 6(1), 68–72 (2015)

    Article  Google Scholar 

  14. 14.

    Chou, T.R., Hsieh, J., Chen, W.T., Chao, C.Y.: Influence of particle size on the ion effect of TiO2 nanoparticle doped nematic liquid crystal cell. Jpn. J. Appl. Phys. 53(7), 071701–071706 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    Yadav, G., Katiyar, R., Pathak, G., Manohar, R.: Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal. J. Theor. Appl. Phys. 1, 1–8 (2018)

    Google Scholar 

  16. 16.

    Lee, W.-K., Choi, J.-H., Na, H.-J., Lim, J.-H., Han, J.-M., Hwang, J.-Y., Seo, D.-S.: Low-power operation of vertically aligned liquid-crystal system via anatase–TiO2 nanoparticle dispersion. Opt. Lett. 34, 3653–3655 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    Huang, C.Y., Selvaraj, P., Senguttuvan, G., Hsu, C.J.: Electro-optical and dielectric properties of TiO2 nanoparticles in nematic liquid crystals with high dielectric anisotropy. J. Mol. Liq. 286, 110902–110906 (2019)

    Article  Google Scholar 

  18. 18.

    Marzal, V., Caño-García, M., Torres, J.C., Quintana, X., Pérez, I., Garcia-Camara, B.: Electrical behavior of liquid crystal devices with dielectric nanoparticles. J. Nanomater. 1, 1–7 (2020)

    Article  Google Scholar 

  19. 19.

    Pathak, G., Katiyar, R., Agrahari, K., Srivastava, A., Dabrowski, R., Garbat, K., Manohar, R.: Analysis of birefringence property of three different nematic liquid crystals dispersed with TiO2 nanoparticles. Opto-Electron. Rev. 26, 11–18 (2018)

    ADS  Article  Google Scholar 

  20. 20.

    Pathak, G., Pandey, S., Katiyar, R., Srivastava, A., Dabrowski, R., Garbat, K., Manohar, R.: Analysis of photoluminescence, UV absorbance, optical band gap and threshold voltage of TiO2 nanoparticles dispersed in high birefringence nematic liquid crystal towards its application in display and photovoltaic devices. J. Lumin. 192, 33–39 (2017)

    Article  Google Scholar 

  21. 21.

    Asahi, R., Taga, Y., Mannstadt, W., Freeman, A.: Phys. Rev. B: Condens. Matter Mater. Phys. 61, 7459–7465 (2000)

    ADS  Article  Google Scholar 

  22. 22.

    Pathak, G., Agrahari, K., Yadav, G., Srivastava, A., Strzezysz, O., Manohar, R.: Tuning of birefringence, optical response time and dielectric anisotropy by the dispersion of fluorescent dye into the nematic liquid crystal. Appl. Phys. A 124, 463–471 (2018)

    ADS  Article  Google Scholar 

  23. 23.

    Manohar, R., Pandey, K.K., Yadav, S.P., Srivastava, A.K., Misra, A.K.: Surface anchoring effect on guest-host ferroelectric liquid crystal response time—an electro-optical investigation. Philos. Mag. 90(34), 4529–4539 (2010)

    ADS  Article  Google Scholar 

  24. 24.

    Potukuchi, D.M., George, A.K., Carboni, C., Al-Harthi, S.H., Naciri, J.: Frequency dielectric relaxation, spontaneous polarization, optical tilt angle and response time investigations in a fluorinated ferroelectric liquid crystal, N125F2(R*). Ferroelectrics 300, 79–93 (2004)

    Article  Google Scholar 

  25. 25.

    Pandey, S., Vimal, T., Singh, D.P., Gupta, S.K., Pathak, G., Katiyar, R., Manohar, R.: Core/shell quantum dots in ferroelectric liquid crystals matrix: effect of spontaneous polarisation coupling with dopant. Liq. Cryst. 43, 980–993 (2016)

    Article  Google Scholar 

  26. 26.

    Tauc, J.: Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968)

    Article  Google Scholar 

  27. 27.

    Karapinar, R.: Electro-optic response of a polymer dispersed liquid crystal film. Tr. J. Phys. 22, 227–236 (1998)

    Google Scholar 

Download references

Acknowledgements

One of the authors RM is thankful to UGC for MID CAREER AWARD and Centre for Excellence—Uttar Pradesh Government at APJ Abdul Kalam Centre for Innovation—University of Lucknow, Lucknow.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Govind Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pathak, G., Shukla, G., Srivastava, A. et al. Dispersion of nanoparticles into the low birefringent nematic liquid crystal: study of optical and electro-optical parameters and its applicability towards liquid crystal displays. J Theor Appl Phys (2020). https://doi.org/10.1007/s40094-020-00402-4

Download citation

Keywords

  • Nanoparticles
  • Nematic liquid crystal
  • UV absorbance
  • Photoluminescence
  • Response time