Efficacy of Plasma ONE apparatus for disinfection of S. aureus, P. aeruginosa and E. coli bacteria from the solid surface

Abstract

Cold atmospheric plasma (CAP) is a cocktail of charged particles with high antibacterial potency. In this study, we evaluated CAP efficacy generated by Plasma ONE, a mobile medical device against common chronic wound pathogens. Two sets of working saline suspensions, i.e. 105 and 103 CFU/ml of each reference strain E. coli, P. aeruginosa and S. aureus, were inoculated on Mueller–Hinton media plates and exposed to CAP for 30, 60, 120, 300 s and incubated for 24 h. The radiating nozzle surface was 3.4 cm. Plasma efficacy evaluation was based on the diameter of attained inactivation area and bacterial decontamination rate within. Plasma ONE device showed high capacity against S. aureus in all time intervals and exposure yielded a gradual time-dependent CFU reduction starting with 99.6% after 30 s in the 105 plates. Comparison between mean area diameters of S. aureus and E. coli of 30 and 120 s indicated a significant area increase (p < 0.05). In contrast, P. aeruginosa appeared more resistant to a longer exposure and the inactivation area was hardly extended following the longest exposure. In both Gram-negative bacteria, CFU reduction plateaued at 30 s in 103 petri dishes, while in 105 groups more than 120-s interval was insufficient for attaining full decontamination; however, treatment for 300 s led to complete eradication. Plasma ONE is effective against most commonly isolated pathogens from wounds, but its further validation requires data concerning efficacy in eradicating biofilms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Xiong, Z.: Cold atmospheric pressure plasmas (CAPs) for skin wound healing. In: Plasma medicine—concepts and clinical applications. InTech. http://www.intechopen.com/books/plasma-medicine-concepts-and-clinical-applications/cold-atmospheric-pressure-plasmas-caps-for-skin-wound-healing (2018).

  2. 2.

    Siddiqui, A.R., Bernstein, J.M.: Chronic wound infection: facts and controversies. Clin. Dermatol. 28(5), 519–526

    Article  Google Scholar 

  3. 3.

    Serra, R., Grande, R., Butrico, L., et al.: Chronic wound infections: the role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti. Infect. Ther. 13(5), 605–613

    Article  Google Scholar 

  4. 4.

    Edwards, R., Harding, K.G.: Bacteria and wound healing. Curr Opin Infect Dis 17(2), 91–96 (2004)

    Article  Google Scholar 

  5. 5.

    Petkovsek, Z., Elersic, K., Gubina, M., Zgur-Bertok, D., Starcic Erjavec, M.: Virulence potential of Escherichia coli isolates from skin and soft tissue infections. J. Clin. Microbiol. 47(6), 1811–1817 (2009)

    Article  Google Scholar 

  6. 6.

    Johnson, J.R., Johnston, B., Kuskowski, M.A., Colodner, R., Raz, R.: Spontaneous conversion to quinolone and fluoroquinolone resistance among wild-type Escherichia coli isolates in relation to phylogenetic background and virulence genotype. Antimicrob. Agents Chemother. 49(11), 4739–4744 (2005)

    Article  Google Scholar 

  7. 7.

    Kong, M.G., Kroesen, G., Morfill, G., et al.: Plasma medicine: an introductory review. New J. Phys. 11(11), 115012 (2009)

    ADS  Article  Google Scholar 

  8. 8.

    Kong, K.-F., Vuong, C., Otto, M.: Staphylococcus quorum sensing in biofilm formation and infection. Int. J. Med. Microbiol. 296(2–3), 133–139 (2006)

    Article  Google Scholar 

  9. 9.

    Fridman, A.: Plasma chemistry. Cambridge University Press, New York (2008)

    Google Scholar 

  10. 10.

    Matthes, R., Assadian, O., Kramer, A.: Repeated applications of cold atmospheric pressure plasma does not induce resistance in Staphylococcus aureus embedded in biofilms. GMS Hyg Infect Control 9(3), 17 (2014)

    Google Scholar 

  11. 11.

    Maisch, T., Shimizu, T., Li, Y.-F., et al.: Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS ONE 7(4), e34610 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    Pandit, S., Vrss, M., Huld Helgadóttir, S., Westerlund, F., Mijakovic, I.: Combination of cold atmospheric plasma and vitamin C effectively disrupts bacterial biofilms. https://www.longdom.org/open-access/combination-of-cold-atmospheric-plasma-and-vitamin-c-effectively-disrupts-bacterial-biofilms-2327-5073-1000497.pdf (2017).

  13. 13.

    Becker, S., Zimmermann, J.L., Baumeister, P., et al.: Effects of cold atmospheric plasma (CAP) on bacteria and mucosa of the upper aerodigestive tract. Auris Nasus Larynx 46(2), 294–301 (2019)

    Article  Google Scholar 

  14. 14.

    Koch, R.: Über die neuen Untersuchungsmethoden zum Nachweis der Mikrokosmen in Boden, Luft und Wasser. In: Schwalbe, J. (ed.) Komnüssions-Verlag von F. C. W. Vogel, Leipzig, pp. 137274–137284. Robert Koch-Institut, Berlin (1883)

    Google Scholar 

  15. 15.

    Posnett, J., Gottrup, F., Lundgren, H., Saal, G.: The resource impact of wounds on health-care providers in Europe. J Wound Care 18(4), 154–161 (2009)

    Article  Google Scholar 

  16. 16.

    Bessa, L.J., Fazii, P., Di Giulio, M., Cellini, L.: Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. Int Wound J 12(1), 47–52 (2015). https://doi.org/10.1111/iwj.12049

    Article  Google Scholar 

  17. 17.

    Misra, N.N., Tiwari, B.K., Raghavarao, K.S.M.S., Cullen, P.J.: Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3(3–4), 159–170 (2011). https://doi.org/10.1007/s12393-011-9041-9

    Article  Google Scholar 

  18. 18.

    Maisch, T., Shimizu, T., Isbary, G., et al.: Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol 78(12), 4242–4247 (2012)

    Article  Google Scholar 

  19. 19.

    Olatunde, O.O., Benjakul, S., Vongkamjan, K.: Dielectric barrier discharge cold atmospheric plasma: bacterial inactivation mechanism. J Food Saf 39(6), e12705 (2019). https://doi.org/10.1111/jfs.12705

    Article  Google Scholar 

  20. 20.

    Girgin Ersoy, Z., Barisci, S., Dinc, O.: Mechanisms of the Escherichia coli and Enterococcus faecalis inactivation by ozone. LWT 100, 306–313 (2019)

    Article  Google Scholar 

  21. 21.

    Li, H., Liu, D.: Editorial: plasma biomedicine. Plasma Sci. Technol. 20(4), 040101 (2018)

    ADS  Article  Google Scholar 

  22. 22.

    Weltmann, K.-D., Kindel, E., Brandenburg, R., et al.: Atmospheric pressure plasma jet for medical therapy: plasma parameters and risk estimation. Contrib. Plasma Phys. 49(9), 631–640 (2009). https://doi.org/10.1002/ctpp.200910067

    ADS  Article  Google Scholar 

  23. 23.

    Feng, H., Sun, P., Chai, Y., et al.: The interaction of a direct-current cold atmospheric-pressure air plasma with bacteria. IEEE Trans. Plasma Sci. 37(1), 121–127 (2009)

    ADS  Article  Google Scholar 

  24. 24.

    Dobrynin, D., Friedman, G., Fridman, A., Starikovskiy, A.: Inactivation of bacteria using dc corona discharge: role of ions and humidity. New J. Phys. 13(10), 103033 (2011)

    ADS  Article  Google Scholar 

  25. 25.

    Rupf, S., Lehmann, A., Hannig, M., et al.: Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J. Med. Microbiol. 59(2), 206–212 (2010). https://doi.org/10.1099/jmm.0.013714-0

    Article  Google Scholar 

  26. 26.

    Baldanov, B.B., Ranzhurov, T.V., Semenov, A.P., Gomboeva, S.V.: Cold atmospheric argon plasma jet source and its application for bacterial inactivation. J. Theor. Appl. Phys. 13(2), 95–99 (2019). https://doi.org/10.1007/s40094-019-0326-3

    ADS  Article  Google Scholar 

  27. 27.

    Sohbatzadeh, F., Hosseinzadeh Colagar, A., Mirzanejhad, S., Mahmodi, S.: E. coli, P. aeruginosa, and B. cereus bacteria sterilization using afterglow of non-thermal plasma at atmospheric pressure. Appl. Biochem. Biotechnol. 160(7), 1978–1984 (2010)

    Article  Google Scholar 

  28. 28.

    Mulcahy, L.R., Isabella, V.M., Lewis, K.: Pseudomonas aeruginosa biofilms in disease. Microb. Ecol. 68(1), 1 (2014)

    Article  Google Scholar 

  29. 29.

    Fridman, G., Brooks, A.D., Balasubramanian, M., et al.: Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria. Plasma Process. Polym. 4(4), 370–375 (2007). https://doi.org/10.1002/ppap.200600217

    Article  Google Scholar 

  30. 30.

    Vandervoort, K.G., Brelles-Mariño, G.: Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system. PLoS ONE 9(10), e108512 (2014). https://doi.org/10.1371/journal.pone.0108512

    ADS  Article  Google Scholar 

  31. 31.

    Tian, Y., Sun, P., Wu, H., et al.: Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet. J. Biomed. Res. 24(4), 264–269 (2010)

    Article  Google Scholar 

  32. 32.

    Omran, A.V., Sohbatzadeh, F., Siadati, S. N., Hosseinzadeh Colagar, A., Akishev, Y., Arefi-Khonsari, F.: Single channel atmospheric pressure transporting plasma and plasma stream demultiplexing: physical characterization and application to E. coli bacteria inactivation. J. Phys. D. Appl. Phys. 50(31) (2017).

  33. 33.

    Taghizadeh, L., Brackman, G., Nikiforov, A., van der Mullen, J., Leys, C., Coenye, T.: Inactivation of biofilms using a low power atmospheric pressure argon plasma jet; the role of entrained nitrogen. Plasma Process. Polym. 12(1), 75–81 (2015). https://doi.org/10.1002/ppap.201400074

    Article  Google Scholar 

  34. 34.

    Pai, K., Timmons, C., Roehm, K.D., et al.: Investigation of the roles of plasma species generated by surface dielectric barrier discharge. Sci. Rep. 8(1), 16674 (2018)

    ADS  Article  Google Scholar 

  35. 35.

    Schmidt, A., von Woedtke, T., Vollmar, B., Hasse, S., Bekeschus, S.: Nrf2 signaling and inflammation are key events in physical plasma-spurred wound healing. Theranostics 9(4), 1066–1084 (2019)

    Article  Google Scholar 

  36. 36.

    Arndt, S., Landthaler, M., Zimmermann, J.L., et al.: Effects of cold atmospheric plasma (CAP) on ß-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS ONE 10(3), e0120041 (2015)

    Article  Google Scholar 

  37. 37.

    Hammond, M.E., Lapointe, G.R., Feucht, P.H., et al.: IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J. Immunol. 155(3), 1428–1433 (1995)

    Google Scholar 

  38. 38.

    Bodnar, R.J.: Chemokine regulation of angiogenesis during wound healing. Adv. Wound Care 4(11), 641–650 (2015)

    Article  Google Scholar 

  39. 39.

    Kumar, P., Kumar, S., Udupa, E.P., Kumar, U., Rao, P., Honnegowda, T.: Role of angiogenesis and angiogenic factors in acute and chronic wound healing. Plast. Aesthetic Res. 2(5), 243 (2015)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Deyan Donchev.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zashev, M., Donchev, D., Ivanov, I. et al. Efficacy of Plasma ONE apparatus for disinfection of S. aureus, P. aeruginosa and E. coli bacteria from the solid surface. J Theor Appl Phys (2020). https://doi.org/10.1007/s40094-020-00401-5

Download citation

Keywords

  • Cold atmospheric plasma
  • Chronic wound
  • Wound pathogens
  • Bacterial decontamination
  • S. aureus
  • P. aeruginosa