On the characteristics and optical properties of Mn-based (MnO2) helical conical nanostructure thin films


Mn-based helical conical nano-sculptured thin films were fabricated by means of oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different pitches of each revolution. Atomic force microscopy, field emission scanning electron microscopy and X-ray diffraction (XRD) analyses were used to obtain morphology, nanostructure and crystallography of the samples. Formation of MnO2 film by the proposed method of this work is confirmed by the XRD results. Optical spectra of the films were obtained using s- and p-polarized incident lights at three different incident light angles of 0°, 20° and 30°. Bruggeman homogenization method was employed to obtain spectra for different optical parameters. The observed peaks/oscillations in these spectra are related to the different radii of the deposited sculptured structure with helical conical shape. Results show that by engineering of Mn-based (MnO2) helical conical sculptured thin film the absorption is increased. Hence, by engineering of this type of thin films the absorption increases due to entrapment of light between the elements of the structure (rings) and results in a high broadband absorption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Demangeat, C., Parlebas, J.C.: Electronic, magnetic and spectroscopic properties of manganese nanostructures. Rep. Prog. Phys. 65(11), 1679 (2002)

    ADS  Article  Google Scholar 

  2. 2.

    Siabi-Garjan, A., Savaloni, H., Beik-Mohammadi, J., Grayeli-Korpi, A.R.: Phil. Mag. 93(26), 3527–3546 (2013)

    ADS  Article  Google Scholar 

  3. 3.

    Edward, D.P. and Palik, I.J.H.O.O.C.O.S., Handbook of optical constants of solids. Wiley. New Jersey (1985)

  4. 4.

    Siabi-Garjan, A., Savaloni, H.: Extinction spectra and electric field enhancement of silver chiral nano-flower shaped nanoparticle; comparison of discrete dipole approximation results with experimental results. Plasmonics 10(4), 861–872 (2015)

    Article  Google Scholar 

  5. 5.

    Savaloni, H., Fakharpour, M., Siabi-Garjan, A., Placido, F., Babaei, F.: Fabrication and characterization of Al/glass zig-zag thin film, comparing to the discrete dipole approximation results. Appl. Surf. Sci. 393, 234–255 (2017)

    ADS  Article  Google Scholar 

  6. 6.

    Chabre, Y., Pannetier, J.: Progress in Solid State Chemistry. Prog. Sol. State Chem. 23(1), 1–130 (1995)

    Article  Google Scholar 

  7. 7.

    Espinal, S.L., Suib, J.F., Rusling, J.: Electrochemical catalysis of styrene epoxidation with films of MnO (2) nanoparticles and H (2) O (2). J Am. Chem. Soc. 126, 7676 (2004)

    Article  Google Scholar 

  8. 8.

    Fendorf, R.J., Zasoski, E.: Inhibitory mechanism of cr (iii) oxidation by Mno3. Sci. Technol. 26, 79 (1992)

    Article  Google Scholar 

  9. 9.

    Tournassat, L., Charlet, D., Bosbach, A.M.: Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ. Sci. Technol. 36, 493 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    Xu, L., Geng, Z., He, J., Zhou, G.: Mechanically Robust, Thermally Stable, Broadband Antireflective and Superhydrophobic Thin Films on Glass Substrates. ACS Appl. Mater. Interfaces. 6(12), 9029–9035 (2014)

    Article  Google Scholar 

  11. 11.

    Torkaman, M., Aziz A., Bakar M.A., Ghani, S.A.: Electrochemical synthesis and characterization of different morphologies nanoramsedllite-MnO2. NANO. 7(4), 1250030 (2012). https://doi.org/10.1142/S1793292012500300

    Article  Google Scholar 

  12. 12.

    Fau, J.P., Bonino, A.R.: Electrical properties of sputtered MnO2 thin films. Appl. Sci. 78, 203 (1994)

    ADS  Google Scholar 

  13. 13.

    Seike, J.N.: Electrochromism of 3d transition metal oxides. Sol. Energy. Mater. 22, 107 (1991)

    Article  Google Scholar 

  14. 14.

    Yang, H., Al-Brithen, H., Smith, A.R., Borchers, J.A., Cappelletti, R.L., Vaudin, M.D.: Structural and magnetic properties of η-phase manganese nitride films grown by molecular-beam epitaxy. Appl. Phys. Lett. 78(24), 3860–3862 (2001)

    ADS  Article  Google Scholar 

  15. 15.

    Wang Joo, K., Ran Park, Y.: Inluences of annealing temperature on the optical and structural properties of manganese oxide thin film by zn doping from solgel technique. J. Crystal Growth 270, 162 (2004)

    Article  Google Scholar 

  16. 16.

    Asogwa, P.U., Ezugwu, S.C., Ezema, F.I.: Variation of optical and solid state properties with post deposition annealing in PVA-Capped MnO2 thin films. Superficies y vacío 23(1), 18–22 (2010)

    Google Scholar 

  17. 17.

    Pishdadian, S., Ghaleno, A.S.: Influences of Annealing Temperature on the Optical and Structural Properties of Manganese Oxide Thin Film by Zn Doping from Sol-Gel Technique. Acta. Phys. Pol. A 123, 741–745 (2013)

    ADS  Article  Google Scholar 

  18. 18.

    Jamil, H., Khaleeq-ur-Rahman, M., Dildar, I.M., Shaukat, S.: Structural and optical properties of manganese oxide thin films deposited by pulsed laser deposition at different substrate temperatures. Laser Phys. 27(9), 096101 (2017)

    ADS  Article  Google Scholar 

  19. 19.

    Sherwin, J.A., Lakhtakia, A.: Errata to: Nominal model for structure-property relations of chiral dielectric sculptured thin films. Mathl. Comput. Modelling 34(12–13), 1499–1514 (2001)

    Article  Google Scholar 

  20. 20.

    Michel, B.: Electromagnetic Fields in Unconventional Materials and Structures, pp. 39–82. Wiley, New Jersey (2000)

    Google Scholar 

  21. 21.

    Lakhtakia, A., Messier, R.: Sculptured Thin Films: Nanoengineered Morphology and Optics. SPIE Optical Engineering Press, Bellingham, Washington (2005)

    Google Scholar 

  22. 22.

    Chu, H.O., Quan, W.A.N.G., Shi, Y.J., Song, S.G., Liu, W.G., Shun, Z.H.O.U., Gibson, D., Alajlani, Y., Cheng, L.I.: Structural, optical properties and optical modelling of hydrothermal chemical growth derived ZnO nanowires. Trans. Nonferrous Met. Soc. China 30(1), 191–199 (2020)

    Article  Google Scholar 

  23. 23.

    Maudet, F., Lacroix, B., Santos, A.J., Paumier, F., Paraillous, M., Hurand, S., Corvisier, A., Marsal, C., Giroire, B., Dupeyrat, C., García, R.: Towards perfect MWIR transparency using oblique angle deposition. Appl. Surf. Sci. 470, 943–950 (2019)

    ADS  Article  Google Scholar 

  24. 24.

    Schmidt, D., Schubert, M.: Anisotropic Bruggeman effective medium approaches for slanted columnar thin films. J. Appl. Phys. 114(8), 083510 (2013)

    ADS  Article  Google Scholar 

  25. 25.

    Grigoriev, F.V., Sulimov, V.B., Tikhonravov, A.V.: Structure of highly porous silicon dioxide thin film: Results of atomistic simulation. Coatings 9(9), 568 (2019)

    Article  Google Scholar 

  26. 26.

    Savaloni, H., Babaei, F., Song, S., Placido, F.: Characteristics of sculptured Cu thin films and their optical properties as a function of deposition rate. Appl. Surf. Sci. 255(18), 8041–8047 (2009)

    ADS  Article  Google Scholar 

  27. 27.

    Eckertova, L.: Physics of Thin Films, Chapter 1. Springer, Berlin (1986)

    Google Scholar 

  28. 28.

    Tait, R.N., Smy, T., Brett, M.J.: Modelling and characterization of columnar growth in evaporated films. Thin Sol. Films 226, 196–201 (1993)

    ADS  Article  Google Scholar 

  29. 29.

    Sherwin, J.A., Lakhtakia, A., Michel, B.: Homogenization of similarly oriented, metallic, ellipsoidal inclusions using the Bruggeman formalism. Opt. commun. 178(4–6), 267–273 (2000)

    ADS  Article  Google Scholar 

  30. 30.

    Babaei, F., Esfandiar, A., Savaloni, H.: Optical spectra of graded nanostructured TiO2 chiral sculptured thin films. Opt. Commun. 283(14), 2849–2856 (2010)

    ADS  Article  Google Scholar 

  31. 31.

    Babaei, F., Savaloni, H.: Influence of deposition conditions and of substrate on the structure of uhv deposited erbium films. Opt. commun. 278(2), 321–328 (2007)

    ADS  Article  Google Scholar 

  32. 32.

    Lakhtakia, A.: On percolation and circular Bragg phenomenon in metallic, helicoidally periodic, sculptured thin films. Micr. Opt. Technol. Lett. 24(4), 239–244 (2000)

    Article  Google Scholar 

  33. 33.

    Farid-Shayegan, F., Siabi-Garjan, A., Savaloni, H.: Optik. Int. J. Light Elect. Opt. 183, 277–283 (2019)

    Article  Google Scholar 

  34. 34.

    Savaloni, H., Farid-Shayegan, F.: Measurement of an Optical Parameters: Absorption Scattering and Auto-florescence of Skin in vitro. Int. J. Light Elect. Opt. 196, 163179 (2019)

    Article  Google Scholar 

  35. 35.

    Siabi-Garjan, A., Savaloni, H., Abdi, F., Ghaffal, A., Placido, F.: Investigation on the optical properties of ZnS nano-rod and chiral sculptured thin films using experimental and theoretical approaches. PhysicaScripta 87, 10 (2013)

    Google Scholar 

  36. 36.

    Savaloni, H., Haydari-Nasab, F., Malmir, M.: Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films. Appl. Surf. Sci. 257(21), 9044–9055 (2011)

    ADS  Article  Google Scholar 

  37. 37.

    Grosso, G., Parravicini, G.P.: Solid State Physics. Academic, New York (2000)

    Google Scholar 

Download references


This work was carried out with the support of Islamic Azad University and the University of Tehran.

Author information





Corresponding author

Correspondence to Hadi Savaloni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farid-Shayegan, F., Savaloni, H. On the characteristics and optical properties of Mn-based (MnO2) helical conical nanostructure thin films. J Theor Appl Phys (2020). https://doi.org/10.1007/s40094-020-00400-6

Download citation


  • Mn-based helical conical
  • Sculptured thin films
  • s-polarization
  • p-polarization
  • Bruggeman homogenization