Fabrication and characterization of Mn-implanted GaN layers followed by annealing


We report the effect of Mn incorporation on the structural and optical properties of GaN grown on a sapphire substrate in a plasma-enhanced molecular-beam epitaxy system followed by Mn ion implantation and annealing. The crystalline quality and phase purity were determined by high-resolution X-ray diffraction (XRD). The XRD results indicated that no macroscopic second phases were present in the Mn-implanted GaN layer after the annealing process. High-resolution transmission microscopy and energy dispersive X-ray spectroscopy revealed that the as-grown GaN epilayer and Mn-implanted GaN layer after annealing were single crystals with a hexagonal wurtzite structure, and they grew with a c-axis orientation perpendicular to the sapphire substrate. The Raman and photoluminescence spectra showed that the Mn-implanted GaN layer fabricated with a Mn ion dose of 5 × 1015 cm−2 followed by annealing at 800 °C for 30 min had higher crystalline quality than the Mn-implanted GaN layers fabricated with Mn ion doses of 5 × 1015 and 2 × 1016 cm−2 followed by annealed at 900 °C for 30 and 80 min.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281(5379), 951–956 (1998)

    ADS  Article  Google Scholar 

  2. 2.

    MacDonald, A.H., Schiffer, P., Samarth, N.: Ferromagnetic semiconductors: moving beyond (Ga, Mn)As. Nat. Mater. 4(3), 195–202 (2005)

    ADS  Article  Google Scholar 

  3. 3.

    Ohno, H., Shen, A., Matsukura, F., et al.: (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69(3), 363–365 (1996)

    ADS  Article  Google Scholar 

  4. 4.

    Dietl, T.: A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9(12), 965–974 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    Lee, M., Lee, H., Song, K.M., Kim, J.: Investigation of forward tunneling characteristics of InGaN/GaN blue light-emitting diodes on freestanding GaN detached from a Si substrate. Nanomaterials 8(7), 543 (2018)

    Article  Google Scholar 

  6. 6.

    Hou, Y.: Size effect of nanocavity on the performance of InGaN/GaN nanorod based plasmonic nanolaser. J. Lumin. 208, 279–283 (2019)

    Article  Google Scholar 

  7. 7.

    Lee, M.L., Wang, S.S., Yeh, Y.H., et al.: Light-emitting diodes with surface gallium nitride p–n homojunction structure formed by selective area regrowth. Sci. Rep. 9(1), 3243 (2019)

    ADS  Article  Google Scholar 

  8. 8.

    Edmonds, W., Wang, K.Y., Campion, R.P., et al.: Hall effect and hole densities in Ga1−x MnxAs. Appl. Phys. Lett. 81(16), 3010–3012 (2002a)

    ADS  Article  Google Scholar 

  9. 9.

    Edmonds, K.W., Wang, K.Y., Campion, R.P., et al.: High-curie-temperature Ga1−xMnxAs obtained by resistance-monitored annealing. Appl. Phys. Lett. 81(26), 4991–4993 (2002b)

    ADS  Article  Google Scholar 

  10. 10.

    Dietl, T., Ohno, H., Matsukura, F., et al.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287(5455), 1019–1022 (2000)

    ADS  Article  Google Scholar 

  11. 11.

    Overberg, M.E., Abernathy, C.R., Pearton, S.J., et al.: Indication of ferromagnetism in molecular-beam-epitaxy-derived N-type GaMnN. Appl. Phys. Lett. 79(9), 1312–1314 (2001)

    ADS  Article  Google Scholar 

  12. 12.

    Zajac, M., Doradzinski, R., Gosk, J., et al.: Magnetic and optical properties of GaMnN magnetic semiconductor. Appl. Phys. Lett. 78(9), 1276–1278 (2001)

    ADS  Article  Google Scholar 

  13. 13.

    Reed, M.L., El-Masry, N.A., Stadelmaier, H.H., et al.: Room temperature ferromagnetic properties of (Ga, Mn)N. Appl. Phys. Lett. 79(21), 3473–3475 (2001)

    ADS  Article  Google Scholar 

  14. 14.

    Soo, Y.L., Kioseoglou, G., Kim, S., et al.: Local structure and chemical valency of Mn impurities in wide-band-gap III–V magnetic alloy semiconductors Ga1−xMnxN. Appl. Phys. Lett. 79(24), 3926–3928 (2001)

    ADS  Article  Google Scholar 

  15. 15.

    Kuwabara, S., Kondo, T., Chikyow, T., et al.: Molecular beam epitaxy of wurtzite GaN-based magnetic alloy semiconductors. Jpn. J. Appl. Phys. 240(7B), L724–L727 (2001)

    Article  Google Scholar 

  16. 16.

    Chang, J.Y., Kim, G.H., Lee, J.M., et al.: Transmission electron microscopy study on ferromagnetic (Ga, Mn)N epitaxial films. J. Appl. Phys. 93(10), 7858–7860 (2003)

    ADS  Article  Google Scholar 

  17. 17.

    Zhang, Y.H., Guo, L.L., Shen, W.Z.: Study on the Raman scattering measurements of Mn ion implanted GaN. Mater. Sci. Eng. B 130(1–3), 269–272 (2006)

    Article  Google Scholar 

  18. 18.

    Hashimoto, M., Zhou, Y.K., Tampo, H., et al.: Magnetic and optical properties of GaMnN grown by ammonia-source molecular-beam epitaxy. J. Cryst. Growth 252(4), 499–504 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    Steube, M., Reimann, K., Fröhlich, D., Clarke, S.J.: Free excitons with n=2 in bulk GaN. Appl. Phys. Lett. 71(7), 948–949 (1997)

    ADS  Article  Google Scholar 

  20. 20.

    Shan, W., Schmidt, T.J., Tang, X.H., et al.: Temperature dependence of interband transitions in GaN grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 66(8), 985 (1995)

    ADS  Article  Google Scholar 

  21. 21.

    Choi, H.J., Seong, H.K., Chang, J.Y., et al.: Single-Crystalline Diluted Magnetic Semiconductor GaN: Mn Nanowires. Adv. Mater. 17(11), 1351–1356 (2005)

    ADS  Article  Google Scholar 

Download references


This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (NRF-2016R1D1A1B03930992), (NRF-2016R1A6A1A03012877).

Author information



Corresponding author

Correspondence to Im Taek Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, I.T., Fu, D. Fabrication and characterization of Mn-implanted GaN layers followed by annealing. J Theor Appl Phys (2020). https://doi.org/10.1007/s40094-020-00399-w

Download citation


  • Mn-implantation
  • GaN
  • Thermal annealing
  • Raman
  • Photoluminescence