Two-step preparation and characterization of ZnO Core–Si shell coaxial nanorods


This study compares and analyzes the key characteristics of the ZnO core–Si shell coaxial nanorod (Si@ZnO NR) heterostructures that were grown on semi-insulating, (100)-oriented Si substrates at Si layer temperatures of 450, 500, 550 and 600 °C for optoelectronic device applications. The Si@ZnO NRs were prepared in two separate stages. Vapor-phase transport produced the ZnO NRs, whereas rapid thermal chemical vapor deposition formed the Si layers. Results obtained from X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Raman tests indicate that the ZnO NRs were single crystals with a zincblende configuration. The findings also reveal that the Si layer was polycrystalline in nature, poly-Si, with a würtzite configuration. The present research is beneficial to the optoelectronic devices such as light-emitting diodes, solar cells and photodetectors in the UV–infrared range using the Si@ZnO coaxial nanostructures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Hsueh, H.T., Chang, S.J., Weng, W.Y., Hsu, C.L., Hsueh, T.J., Hung, F.Y., Wu, S.L., Dai, B.T.: Fabrication and characterization of coaxial p-copper oxide/n-ZnO nanowire photodiodes. IEEE Trans. Nanotechnol. 11(1), 127–133 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    Ko, Y., Nagaraju, G., Yu, J.S.: Wire-shaped ultraviolet photodetectors based on a nanostructured NiO/ZnO coaxial p–n heterojunction via thermal oxidation and hydrothermal growth processes. Nanoscale 7(6), 2735–2742 (2015)

    ADS  Article  Google Scholar 

  3. 3.

    Wu, J., Chen, W., Chang, Y.H., Chen, Y.F., Hang, D., Liang, C., Lu, J.: Fabrication and photoresponse of ZnO nanowires/CuO coaxial heterojunction. Nanoscale Res. Lett. 8(1), 1–5 (2013)

    ADS  Article  Google Scholar 

  4. 4.

    Panigrahi, S., Basak, D.: Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection. Nanoscale 3(5), 2336–2341 (2011)

    ADS  Article  Google Scholar 

  5. 5.

    An, S.J., Park, W.I., Yi, G.C., Kim, Y.J., Kang, H.B., Kim, M.Y.: Heteroepitaxal fabrication and structural characterizations of ultrafine GaN/ZnO coaxial nanorod heterostructures. Appl. Phys. Lett. 84(18), 3612 (2004)

    ADS  Article  Google Scholar 

  6. 6.

    Hong, Y.J., Jeon, J.M., Kim, M., Jeon, S.R., Park, K.H., Yi, G.C.: Structural and optical characteristics of GaN/ZnO coaxial nanotube heterostructure arrays for light-emitting device applications. New J. Phys. 11, 125021 (2009)

    ADS  Article  Google Scholar 

  7. 7.

    Park, W.I., Yoo, J.K., Kim, D.W., Yi, G.C., Kim, M.: Fabrication and photoluminescent properties of heteroepitaxial ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures. J. Phys. Chem. B 110(4), 1516–1519 (2006)

    Article  Google Scholar 

  8. 8.

    Park, W.I., Yi, G.C., Lim, M.Y., Pennycook, S.J.: Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Adv. Mater. 15(6), 526–529 (2003)

    Article  Google Scholar 

  9. 9.

    Meng, X.Q., Peng, H., Gai, Y.Q., Li, J.: Influence of ZnS and MgO shell on the photoluminescence properties of ZnO core/shell nanowires. J. Phys. Chem. C 114(3), 1467–1471 (2010)

    Article  Google Scholar 

  10. 10.

    Peng, K.Q., Wang, X., Wu, X.L., Lee, S.T.: Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 9, 3704–3709 (2009)

    ADS  Article  Google Scholar 

  11. 11.

    Cui, Y., Wei, Q.Q., Park, H.K., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)

    ADS  Article  Google Scholar 

  12. 12.

    He, R.R., Yang, P.D.: Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42–46 (2006)

    ADS  Article  Google Scholar 

  13. 13.

    Huang, Y., Duan, X.F., Cui, Y., Lauhon, L.J., Kim, K.H., Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294(5545), 1313–1317 (2001)

    ADS  Article  Google Scholar 

  14. 14.

    Jie, J.S., Zhang, W.J., Peng, K.Q., Yuan, G.D., Lee, C.S., Lee, S.T.: Surface-dominated transport properties of silicon nanowires. Adv. Funct. Mater. 18(20), 3251–3257 (2008)

    Article  Google Scholar 

  15. 15.

    Zhang, X., Zhang, X., Zhang, X., Zhang, Y., Bian, L., Wu, Y., Xie, C., Han, Y., Wang, Y., Gao, P., Wang, L., Jie, J.: ZnSe nanoribbon/Si nanowire p–n heterojunction arrays and their photovoltaic application with graphene transparent electrodes. J. Mater. Chem. 22(43), 22873–22880 (2012)

    Article  Google Scholar 

  16. 16.

    Ma, D., Lee, C.S., Au, F.C., Tong, S.Y., Lee, S.T.: Small-diameter silicon nanowire surfaces. Science 299(5614), l874-1877 (2003)

    Article  Google Scholar 

  17. 17.

    Wu, Y., Xiang, J., Yang, C., Lu, W., Lieber, C.M.: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 6l–65 (2004)

    Google Scholar 

  18. 18.

    Wu, Y., Fan, R., Yang, P.D.: Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires. Nano Lett. 2(2), 83–86 (2002)

    ADS  Article  Google Scholar 

  19. 19.

    Wang, C., Wang, J., Li, Q., Yi, G.C.: ZnSe–Si Bi-coaxial nanowire heterostructures. Adv. Funct. Mater. 15(9), 1471–1477 (2005)

    Article  Google Scholar 

  20. 20.

    Song, H.S., Zhang, W.J., Cheng, C., Tang, Y.B., Luo, L.B., Chen, X., Luan, C.Y., Meng, X.M., Zapien, J.A., Wang, N., Lee, C.S., Bello, L., Lee, S.T.: Controllable fabrication of three-dimensional radial ZnO nanowire/silicon microrod hybrid architectures. Cryst. Growth Des. 11(1), 147–153 (2011)

    Article  Google Scholar 

  21. 21.

    Gad, A.E., Hoffmann, M.W.G., Hernandez-Ramirez, F., Prades, J.D., Shen, H., Mathur, S.: Coaxial p-Si/n-ZnO nanowire heterostructures for energy and sensing applications. Mater. Chem. Phys. 135(2–3), 618–622 (2012a)

    Article  Google Scholar 

  22. 22.

    Gad, A.E., Hoffmann, M.W.G., Hernandez-Ramirez, F., Prades, J.D., Shen, H., Mathur, S.: Coaxial n-ZnO/p-Si nanowire heterostructures for energy and sensing applications. Procedia Eng. 47, 1279–1280 (2012b)

    Article  Google Scholar 

  23. 23.

    Cho, H.D., Cho, H.Y., Kwak, D.W., Kang, T.W., Yoon, I.T.: Synthesis and characterization of Si/ZnO coaxial nanorod heterostructure on (100) Si substrate. J. Cryst. Growth 437, 26–31 (2016)

    ADS  Article  Google Scholar 

  24. 24.

    Yoon, I.T., Cho, H.D., Cho, H.Y., Kwak, D.W., Lee, S.J.: Effect of Si growth temperature on fabrication of Si-ZnO coaxial nanorod heterostructure on (100) Si substrate. Electron. Mater. 46(7), 4119–4125 (2017)

    ADS  Article  Google Scholar 

  25. 25.

    Ahsanulhaq, Q., Kim, S.H., Hahn, Y.B.: Hexagonally patterned selective growth of well-aligned ZnO nanorod arrays. J. Alloys Compd. 484(1–2), 17 (2009)

    Article  Google Scholar 

  26. 26.

    Chen, C.W., Chen, K.H., Shen, C.H., Ganguly, A., Chen, L.C., Wu, J.J., Wen, H.I., Pong, W.F.: Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime. Appl. Phys. Lett. 88(24), 241905 (2006)

    ADS  Article  Google Scholar 

  27. 27.

    Lupan, O., Chow, L., Chai, G., Chernyak, L., Lopatiuk-Tirpak, O., Heinrich, H.: Focused-ion-beam fabrication of ZnO nanorod-based UV photodetector using the in-situ lift-out technique. Phys. Stat. Sol. (a) 205(11), 2673 (2008)

    ADS  Article  Google Scholar 

  28. 28.

    Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doǧan, S., Avrutin, V., Cho, S.J., Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005)

    ADS  Article  Google Scholar 

  29. 29.

    Alim, K.A., Fonoberov, V.A., Shamsa, M., Balandin, A.: Micro-Raman investigation of optical phonons in ZnO nanocrystals. J. Appl. Phys. 97(12), 124313 (2005)

    ADS  Article  Google Scholar 

Download references


This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (NRF-2016R1D1A1B03930992), (NRF-2016R1A6A1A03012877).

Author information



Corresponding author

Correspondence to Im Taek Yoon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, I.T., Cho, H.D. Two-step preparation and characterization of ZnO Core–Si shell coaxial nanorods. J Theor Appl Phys (2020).

Download citation


  • ZnO nanorod
  • Coaxial nanorod heterostructure
  • Si@ZnO NR
  • Chemical vapor deposition