Bismuth-based metal–organic framework prepared by pulsed laser ablation method in liquid


Metal organic framework (MOF) is an important class of highly porous hybrid materials with its unique structures and properties. A bismuth-based MOF was prepared by pulsed laser ablation in liquid environment as a physical bottom-up method for the first time. The experiment involved the ablation of a bismuth target in a solvents with the fundamental wavelength of a ns pulsed Nd:YAG laser. Materials include bismuth target for preparation of Bi3+ ion as a connector center, benzene-1,3,5-tricarboxylic acid (BTC) as a bridging ligand, and methanol and dimethylformamide as a solvent. We studied the effects of laser fluence and concentration of BTC in the ablation environment on the properties of bismuth-based MOF structure. The MOF was characterized by Fourier transform infrared spectroscopy for determination of functional groups, Ultraviolet–Visible (UV–Vis) spectrophotometer for evaluation of optical properties, X-ray diffraction for investigation of crystal structure, field emission scanning electron microscope, and transmission electron microscope for presentation of morphology and size of produced nanostructures. Based on the results, laser ablation is a capable, clean, and simple candidate method for synthesizing different kinds of MOF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Yao, J.D., Zheng, Z.Q., Yang, G.W.: Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mat. Sci. 106, 100573 (2019)

    Article  Google Scholar 

  2. 2.

    Menazea, A.A., Mostafa, A.M., Al-Ashkar, E.A.: Impact of CuO doping on the properties of CdO thin films on the catalytic degradation by using pulsed-Laser deposition technique. Opt. Mater. 100, 109663 (2020)

    Article  Google Scholar 

  3. 3.

    Henning, R.A., Uredat, P., Simon, C., Bloesser, A., Cop, P., Elm, M.T., Marschall, R.: Characterization of MFe2O4 (M=Mg, Zn) thin films prepared by pulsed laser deposition for photoelectrochemical applications. J. Phys. Chem. C. 123, 18240–18247 (2019)

    Article  Google Scholar 

  4. 4.

    Abdi, S., Dorranian, D.: Effect of CTAB concentration on the properties of ZnO nanoparticles produced by laser ablation method in CTAB solution. Opt. Laser Technol. 108, 372–377 (2018)

    ADS  Article  Google Scholar 

  5. 5.

    Najafianpour, N., Dorranian, D.: Properties of graphene/Au nanocomposite prepared by laser irradiation of the mixture of individual colloids. Appl. Phys. A. 124, 805 (2018)

    ADS  Article  Google Scholar 

  6. 6.

    Ghoranneviss, P., Dorranian, D., Sari, A.H.: Effects of laser fluence on the Cd(OH)2/CdO nanostructures produced by pulsed laser ablation method. Opt. Quant. Electron. 51, 88 (2019)

    Article  Google Scholar 

  7. 7.

    Safa, M., Dorranian, D., Masoudi, A.A., Matin, L.F.: Characterizing nickel oxide nanostructures produced by laser ablation method: effects of laser fluence. Appl. Phys. A. 125, 687 (2019)

    ADS  Article  Google Scholar 

  8. 8.

    Solati, E., Aghazadeh, Z., Dorranian, D.: Effects of liquid ablation environment on the characteristics of TiO2 nanoparticles. J. Clust. Sci. 31, 961–969 (2020)

    Article  Google Scholar 

  9. 9.

    Ghaem, E.N., Dorranian, D., Sari, A.H.: Characterization of cobalt oxide nanoparticles produced by laser ablation method: effects of laser fluence. Physica E. 115, 113670 (2020)

    Article  Google Scholar 

  10. 10.

    Vaghri, E., Khalaj, Z., Dorranian, D.: Investigating the effects of different liquid environments on the characteristics of multilayer graphene and graphene oxide nanosheets synthesized by green laser ablation method. Diam. Relat. Mater. 103, 107697 (2020)

    ADS  Article  Google Scholar 

  11. 11.

    Nasiri, P., Doranian, D., Sari, A.H.: Synthesis of Au/Si nanocomposite using laser ablation method. Opt. Laser Technol. 113, 217–224 (2019)

    ADS  Article  Google Scholar 

  12. 12.

    Ghorbani, V., Dorranian, D.: Properties of TiO2/Au nanocomposite produced by pulsed laser irradiation of mixture of individual colloids. Appl. Phys. A 122, 1019 (2016)

    ADS  Article  Google Scholar 

  13. 13.

    Motakef-Kazemi, N., Shojaosadati, S.A., Morsali, A.: In situ synthesis of a drug-loaded MOF at room temperature. Microporous Mesoporous Mat. 186, 73–79 (2014a)

    Article  Google Scholar 

  14. 14.

    Miri, B., Motakef-Kazemi, N., Shojaosadati, S.A., Morsali, A.: Application of a nanoporous metal–organic framework based on iron carboxylate as drug delivery system. IJPR. 17, 1164–1171 (2018)

    Google Scholar 

  15. 15.

    Mehmandoust, M.R., Motakef-Kazemi, N., Ashouri, F.: Nitrate adsorption from aqueous solution by metal–organic framework MOF-5. Iran. J. Sci. Technol. A 43, 443–449 (2019)

    Article  Google Scholar 

  16. 16.

    Ferey, G.: Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008)

    Article  Google Scholar 

  17. 17.

    Tranchemontagne, D.J., Hunt, R.J., Yaghi, O.: Room temperature synthesis of metal–organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553–8557 (2008)

    Article  Google Scholar 

  18. 18.

    Zhang, B., Luo, Y., Kanyuck, K., Saenz, N., Reed, K., Zavalij, P., Mowery, J., Bauchan, G.: Facile and template-free solvothermal synthesis of mesoporous/macroporous metal–organic framework nanosheets. RSC Adv. 8, 33059–33064 (2018)

    Article  Google Scholar 

  19. 19.

    Sattar, T., Athar, M.: Hydrothermal synthesis and characterization of copper glycinate (Bio-MOF-29) and it’s in vitro drugs adsorption studies. J. Inorg. Chem. 7, 17–27 (2017)

    Google Scholar 

  20. 20.

    Liao, J.H., Wu, P.C., Huang, W.C.: Ionic liquid as solvent for the synthesis and crystallization of a coordination polymer: (EMI)[Cd(BTC)] (EMI=1-Ethyl-3-methylimidazolium, BTC=1,3,5-benzenetricarboxylate). Cryst. Growth Des. 6, 1062–1063 (2006)

    Article  Google Scholar 

  21. 21.

    Choi, J.K., Kim, J., Jhung, S.H., Kim, H.K., Chang, J.S., Chae, H.K.: Microwave synthesis of a porous metal–organic framework: zinc terephthalate MOF-5. Bull. Kor. Chem. Soc. 27, 1523–1524 (2006)

    Article  Google Scholar 

  22. 22.

    Jhung, S.H., Lee, J.H., Yoon, J.W., Serre, C., Ferey, G., Chang, J.S.: Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption. Adv. Mater. 19, 121–124 (2007)

    ADS  Article  Google Scholar 

  23. 23.

    Son, W.J., Kim, J., Kim, J., Ahn, W.S.: Sonochemical synthesis of MOF-5. Chem. Commun. 47, 6336–6338 (2008)

    Article  Google Scholar 

  24. 24.

    Chen, Y., Yang, C., Wang, X., Yang, J., Ouyang, K., Li, J.: Kinetically controlled ammonia vapor diffusion synthesis of a Zn(II) MOF and its H2O/NH3 adsorption properties. J. Mater. Chem. A 4, 10345–10351 (2016)

    Article  Google Scholar 

  25. 25.

    Yang, H.M., Liu, X., Song, X.L., Yang, T.L., Liang, Z.H., Fan, C.M.: In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr. Trans. Nonferrous Metals Soc. 25, 3987–3994 (2015)

    Article  Google Scholar 

  26. 26.

    Lv, D., Chen, Y., Li, Y., Shi, R., Wu, H., Sun, X., Xiao, J., Xi, H., Xia, Q., Li, Z.: Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 62, 2030–2036 (2017)

    Article  Google Scholar 

  27. 27.

    Campello, S.L., Gentil, G., Júnior, S.A., de Azevedo, W.M.: Laser ablation: a new technique for the preparation of metal–organic frameworks Cu3(BTC)2(H2O)3. Mater. 148, 200–203 (2015)

    Google Scholar 

  28. 28.

    Da Costa, O.M.M.M., De Azevedo, W.M.: Highly luminescent metal–organic framework Eu (TMA)(H2O)4 materials prepared by laser ablation technique in liquid. J. Lumin. 170, 648–653 (2016)

    Article  Google Scholar 

  29. 29.

    Ribeiro, E.L., Davari, S.A., Hu, S., Mukherjee, D., Khomami, B.: Laser-induced synthesis of ZIF-67: a facile approach for the fabrication of crystalline MOFs with tailored size and geometry. Mater. Chem. Front. 3, 1302–1309 (2019)

    Article  Google Scholar 

  30. 30.

    Sabouni, R., Kazemian, H., Rohani, S.: A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies. Chem. Eng. J. 165, 966–973 (2010)

    Article  Google Scholar 

  31. 31.

    Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.: Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999)

    ADS  Article  Google Scholar 

  32. 32.

    Hajiashrafi, S., Motakef-Kazemi, N.: Preparation and evaluation of ZnO nanoparticles by thermal decomposition of MOF-5. Heliyon 5, e02152 (2019)

    Article  Google Scholar 

  33. 33.

    Motakef-Kazemi, N., Shojaosadati, S.A., Morsali, A.: Metal–organic framework [Zn2(1,4-bdc)2 (dabco)]n as drug delivery system. Adv. Mat. Res. 829, 247–250 (2014b)

    Google Scholar 

  34. 34.

    Jiang, D., Chen, M., Wang, H., Zeng, G., Huang, D., Cheng, M., Liu, Y., Xue, W., Wang, Z.W.: The application of different typological and structural MOFs-based materials for the dyes adsorption. Coord. Chem. Rev. 380, 471–483 (2019)

    Article  Google Scholar 

  35. 35.

    Wang, C.C., Yi, X.H., Wang, P.: Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Appl. Catal. B 247, 24–48 (2019)

    Article  Google Scholar 

  36. 36.

    Motakef-Kazemi, N.: A novel sorbent based on metal–organic framework for mercury separation from human serum samples by ultrasound assisted-ionic liquid-solid phase microextraction. AMECJ. 2, 67–78 (2019)

    Article  Google Scholar 

  37. 37.

    Kreno, L.E., Leong, K., Farha, O.K., Allendorf, M., Van Duyne, R.P., Hupp, J.T.: Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012)

    Article  Google Scholar 

  38. 38.

    Hu, Z., Deibert, B.J., Li, J.: Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 43, 5815–5840 (2014)

    Article  Google Scholar 

  39. 39.

    Yoon, M., Srirambalaji, R., Kim, K.: Homochiral metal–organic frameworks for asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012)

    Article  Google Scholar 

  40. 40.

    Liu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., Su, C.Y.: Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014)

    Article  Google Scholar 

  41. 41.

    Murray, L.J., Dinc, M., Long, J.R.: Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009)

    Article  Google Scholar 

  42. 42.

    Makal, T.A., Li, J.R., Lu, W., Zhou, H.C.: Methane storage in advanced porous materials. Chem. Soc. Rev. 41, 7761–7779 (2012)

    Article  Google Scholar 

  43. 43.

    Suh, M.P., Park, H.J., Prasad, T.K., Lim, D.W.: Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012)

    Article  Google Scholar 

  44. 44.

    He, Y., Zhou, W., Qian, G., Chen, B.: Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014)

    Article  Google Scholar 

  45. 45.

    Noro, S.I., Kitagawa, S., Kondo, M., Seki, K.: A new, methane adsorbent, porous coordination polymer. Angew. Chem. Int. Ed. 39, 2081–2084 (2000)

    Article  Google Scholar 

  46. 46.

    Adil, K., Belmabkhout, Y., Pillai, R.S., Cadiau, A., Bhatt, P.M., Assen, A.H., Maurin, G., Eddaoudi, M.: Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017)

    Article  Google Scholar 

  47. 47.

    Yu, J., Xie, L.H., Li, J.R., Ma, Y., Seminario, J.M., Balbuena, P.B.: CO2 capture and separations using MOFs: computational and experimental studies. Chem. Rev. 117, 9674–9754 (2017)

    Article  Google Scholar 

  48. 48.

    Li, J.R., Sculley, J., Zhou, H.C.: Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012)

    Article  Google Scholar 

  49. 49.

    Li, J.R., Kuppler, R.J., Zhou, H.C.: Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009)

    Article  Google Scholar 

  50. 50.

    Bao, Z., Chang, G., Xing, H., Krishna, R., Ren, Q., Chen, B.: Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy Environ. Sci. 9, 3612–3641 (2016)

    Article  Google Scholar 

  51. 51.

    Ramaswamy, P., Wong, N.E., Shimizu, G.K.: MOFs as proton conductors–challenges and opportunities. Chem. Soc. Rev. 43, 5913–5932 (2014)

    Article  Google Scholar 

  52. 52.

    Wang, B., Xie, L.H., Wang, X., Liu, X.M., Li, J., Li, J.R.: Applications of metal–organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal. Green Energy Environ. 3, 191–228 (2018)

    Article  Google Scholar 

  53. 53.

    Evans, O.R., Lin, W.: Crystal engineering of NLO materials based on metal−organic coordination networks. Acc. Chem. Res. 35, 511–522 (2002)

    Article  Google Scholar 

  54. 54.

    Evans, O.R., Lin, W.: Crystal engineering of nonlinear optical materials based on interpenetrated diamondoid coordination networks. Chem. Mater. 13, 2705–2712 (2001)

    Article  Google Scholar 

  55. 55.

    Stavila, V., Talin, A.A., Allendorf, M.D.: MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 43, 5994–6010 (2014)

    Article  Google Scholar 

  56. 56.

    Motakef-Kazemi, N., Shojaosadati, S.A., Morsali, A.: Evaluation of the effect of nanoporous nanorods Zn2(bdc)2(dabco) dimension on ibuprofen loading and release. J. Iran. Chem. Soc. 13, 1205–1212 (2016)

    Article  Google Scholar 

  57. 57.

    Motakef-Kazemi, N., Rashidian, M., Taghizadeh Dabbagh, S., Yaqoubi, M.: Synthesis and characterization of bismuth oxide nanoparticles by thermal decomposition of bismuth-based MOF and evaluation of its nanocomposite. IJCCE. (2019).

    Article  Google Scholar 

  58. 58.

    Wang, G., Sun, Q., Liu, Y., Huang, B., Dai, Y., Zhang, X., Qin, X.: A bismuth-based metal–organic framework as an efficient visible-light-driven photocatalyst. Chem. Eur. J. 21, 2364–2367 (2015)

    Article  Google Scholar 

  59. 59.

    Savage, M., Yang, S., Suyetin, M., Bichoutskaia, E., Lewis, W., Blake, A.J., Barnett, S.A., Schrçder, M.: A novel bismuth-based metal–organic framework for high volumetric methane and carbon dioxide adsorption. Chem. Eur. J. 20, 1–14 (2014)

    Article  Google Scholar 

  60. 60.

    Jabeen Fatima, M.J., Niveditha, C.V., Sindhu, S.: α-Bi2O3 photoanode in DSSC and study of the electrode–electrolyte interface. RSC Adv. 5, 78299 (2015)

    Article  Google Scholar 

  61. 61.

    Wang, Z., Jiang, C., Huang, R., Peng, H., Tang, X.: Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method. J. Phys. Chem. C. 118, 1155–1160 (2014)

    Article  Google Scholar 

  62. 62.

    Xu, L., Xu, Y., Li, X., Wang, Z., Sun, T., Zhang, X.: Eu3+/Tb3+ functionalized Bi-based metal–organic frameworks toward tunable white-light emission and fluorescence sensing applications. Dalton Trans. 47, 16696 (2018)

    Article  Google Scholar 

  63. 63.

    Huang, G., Li, Z., Liu, K., Tang, X., Huanga, J., Zhang, G.: Bismuth MOF-derived BiOBr/Bi24O31Br10 heterojunctions with enhanced visible-light photocatalytic performance. Catal. Sci. Technol. 10, 4645–4654 (2020)

    Article  Google Scholar 

  64. 64.

    Zhanga, K., Xieb, A., Sunb, M., Jiangc, W., Wub, F., Dong, W.: Electromagnetic dissipation on the surface of metal organic framework (MOF)/reduced graphene oxide (RGO) hybrids. Mater. Chem. Phys. 199, 340–347 (2017)

    Article  Google Scholar 

  65. 65.

    Vardali, S.C., Manousi, N., Barczak, M., Giannakoudakis, D.A.: Novel approaches utilizing metal–organic framework composites for the extraction of organic compounds and metal traces from fish and seafood. Molecules 25, 513 (2020)

    Article  Google Scholar 

  66. 66.

    Zhu, S., Wu, M., Zhao, W., Liu, P., Yi, F., Li, G., Tao, K., Han, L.: In situ growth of metal–organic framework on BiOBr 2D material with excellent photocatalytic activity for dye degradation. Cryst. Growth Des. 17(5), 2309–2313 (2017)

    Article  Google Scholar 

  67. 67.

    Wang, G., Liu, Y., Huang, B., Qin, X., Zhang, X., Dai, Y.: A novel metal–organic framework based on bismuth and trimesic acid: synthesis, structure and properties. Dalton Trans. 44, 16238–16241 (2015)

    Article  Google Scholar 

  68. 68.

    Bulmahn, J.C., Tikhonowski, G., Popov, A.A., Kuzmin, A., Klimentov, S.M., Kabashin, A.V., Prasad, P.N.: Laser-ablative synthesis of stable aqueous solutions of elemental bismuth nanoparticles for multimodal theranostic applications. J. Nanomater. 10(8), 1463 (2020)

    Article  Google Scholar 

  69. 69.

    Gondal, M.A., Saleh, T.A., Drmosh, Q.: Optical properties of bismuth oxide nanoparticles synthesized by pulsed laser ablation in liquids. Sci. Adv. Mater. 4, 507–510 (2012)

    Article  Google Scholar 

  70. 70.

    Ismail, R.A., Fadhil, F.A.: Effect of electric field on the properties of bismuth oxide nanoparticles prepared by laser ablation in water. J. Mater. Sci. Mater. Electron. 25, 1435–1440 (2014)

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Davoud Dorranian or Negar Motakef-Kazemi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ataei, F., Dorranian, D. & Motakef-Kazemi, N. Bismuth-based metal–organic framework prepared by pulsed laser ablation method in liquid. J Theor Appl Phys (2020).

Download citation


  • Metal organic framework
  • Bismuth-based MOF
  • Pulsed laser ablation
  • Nanostructure