The effects of grounded electrode geometry on RF-driven cold atmospheric pressure plasma micro-jet

Abstract

With the argument that two-electrode DBD-like systems are much more operational than single-electrode systems in biomedical applications, targets sensitive to temperature and electric shock, the effects of parameters associated with the geometry of the grounded electrode such as its shape, size, and position it at the output of the atmospheric pressure RF plasma jet in two-electrode systems is investigated. By varying the position of the typical narrow ring grounded electrode on the dielectric tube toward the powered electrode, the ratio of the axial to radial electric field components depend on the externally applied potential to the plasma has been investigated and shown that the axial component of the electric field is maximized at certain position(s) of the grounded electrode. The analysis of the data indicates that there is an inverse relationship between the magnitude of the axial electric field in the plasma channel and the discharge ignition voltage, and a direct relationship with the plasma jet length. It is known that by increasing the width of the ground electrode until the full covering of dielectric, the jet length increases from the dielectric output to the neighborhood near the needle electrode, and reduces the discharge ignition threshold and consequently power consumption of the jet, but increasing its width to greater than the above values does not have a significant effect on jet output. It has also been shown that by tapering the dielectric end and fully covering it with its conical-shaped electrode, the output jet length increases and decreases its width.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. 1.

    Liu, F., Sun, P., Bai, N., Tian, Y., Zhou, H., Wei, S., Zhou, Y., Zhang, J., Zhu, W., Becker, K., Fang, J.: Inactivation of bacteria in an aqueous environment by a direct-current, cold-atmospheric-pressure air plasma micro-jet. Plasma Proc. Polym. 7, 231–236 (2010)

    Article  Google Scholar 

  2. 2.

    Babayan, S.E., Jeong, J.Y., Tu, V.J., Park, J., Selwyn, G.S., Hicks, R.F.: Deposition of silicon dioxide films with an atmospheric pressure plasma jet. Plasma Source Sci. Technol. 7(3), 286–288 (1998)

    ADS  Article  Google Scholar 

  3. 3.

    Cheng, C., Liye, Z., Zhan, R.: Surface modification of polymer fiber by the new atmospheric pressure cold plasma. Surf. Coat. Technol. 200, 6659–6665 (2006)

    Article  Google Scholar 

  4. 4.

    Chen, G., Chen, S., Zhou, M., Feng, W., Gu, W., Yang, S.: The preliminary discharge characterization of a noble APGD plume and its application in organic contaminated degradation. Plasma Sour. Sci. Technol. 15, 603–608 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    Ha, H., Moon, B.K., Horiuchi, T., Inushima, T., Ishiwara, H., Koinuma, H.: Structure and electric properties of TiO2 films prepared by cold plasma torch under atmospheric pressure. Mater. Sci. Eng., B 41(1), 143–147 (1996)

    Article  Google Scholar 

  6. 6.

    Liu, X., Chen, F., Huang, S., Yang, X., Lu, Y., Zhou, W., Xu, W.: Characteristic and application study of cold atmospheric-pressure nitrogen plasma jet. IEEE Trans. Plasma Sci. 43(6), 1959–1968 (2015)

    ADS  Article  Google Scholar 

  7. 7.

    Klíma, M., Slavíček, P., Šíra, M., Čižmár, T., Vaněk, P.: HF plasma pencil and DC diaphragm discharge in liquids—diagnostics and applications. J. Czech. Phys. 56, B1051–B1056 (2006)

    Article  Google Scholar 

  8. 8.

    Sun, P., Pan, J., Tian, Y., Bai, N., Wu, H., Wang, L., Yu, C., Zhang, J., Zhu, W.: Tooth whitening with hydrogen peroxide assisted by a direct-current cold atmospheric-pressure air plasma micro-jet. IEEE Trans. Plasma Sci. 38(8), 1892–1896 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    Jiang, C., Chen, M., Gorur, A., Schaudinn, C., Jaramillo, D.E., Costerton, J.W., Sedghizadeh, P.P., Vernier, P.T., Gundersen, M.A.: Nanosecond pulsed plasma dental probe. Plasma Process. Polym. 6, 479–483 (2009)

    Article  Google Scholar 

  10. 10.

    Pesnel, S., Vandamme, M., Lerondel, S., Le Pape, A., Robert, E., Dozias, S., Barbosa, E., Pouvesle, J.: Antitumor effect of plasma exposure: preliminary results in a mouse model. In: Proceedings of the 2nd International Conference on Plasma Medicine. San Antonio, TX (2009)

  11. 11.

    Lu, X., Keidar, M., Laroussi, M., Choi, E., Szili, E.J., Ostrikov, K.: Transcutaneous plasma stress: from soft-matter models to living tissues. Mater. Sci. Eng., R 138, 36–59 (2019)

    Article  Google Scholar 

  12. 12.

    Lu, X., Laroussi, M., Puech, V.: On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sour. Sci. Technol. 21, 034005 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    Walsh, J.L., Kong, M.G.: Contrasting characteristics of linear-field and cross-field atmospheric plasma jets. Appl. Phys. Lett. 93(11), 111501 (2008)

    ADS  Article  Google Scholar 

  14. 14.

    Leveille, V., Coulombe, S.: Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species, Plasma Sour. Sci. Technol. 14, 467–476 (2005)

    Google Scholar 

  15. 15.

    Storek, D., Grund, K.E., Gronbach, G., Farin, G., Becker, H.D.: Endoscopic argon gas coagulation--initial clinical experiences. Z. Gastroenterol. 31, 675–679 (1993). (in German)

    Google Scholar 

  16. 16.

    Stoffels, E., Kief, I.E., Sladek, R.E.J.: Superficial treatment of mammalian cells using plasma needle. J. Phys. D Appl. Phys. 36(23), 2908–2913 (2003)

    ADS  Article  Google Scholar 

  17. 17.

    Lu, X., Jiang, Z., Xiong, Q., Tang, Z., Pan, Y.: A single electrode room-temperature plasma jet device for biomedical applications. Appl. Phys. Lett. 92, 151504 (2008)

    ADS  Article  Google Scholar 

  18. 18.

    Li, Q., Li, J.T., Zhu, W.C., Zhu, X.M., Pu, Y.K.: Effects of gas flow rate on the length of atmospheric pressure non-equilibrium plasma jets. Appl. Phys. Lett. 95(14), 141502 (2009)

    ADS  Article  Google Scholar 

  19. 19.

    Lu, X., Ostrikov, K.: Guided ionization waves: the physics of repeatability. Appl. Phys. Rev. 5, 031102 (2018)

    ADS  Article  Google Scholar 

  20. 20.

    Liu, W., Li, Z., Zhao, L., Zheng, Q., Ma, C.: Study on formation mechanism of atmospheric pressure glow discharge air plasma jet. Phys. Plasmas 25, 083505 (2018)

    ADS  Article  Google Scholar 

  21. 21.

    Walsh, J.L., Iza, F., Janson, N.B., Law, V.J., Kong, M.G.: Three distinct modes in a cold atmospheric pressure plasma jet. J. Phys. D Appl. Phys. 43(7), 75201 (2010)

    Article  Google Scholar 

  22. 22.

    Yan, W., Economou, D.J.: Gas flow rate dependence of the discharge characteristics of a helium atmospheric pressure plasma jet interacting with a substrate. J. Phys. D Appl. Phys. 50, 415205 (2017)

    Article  Google Scholar 

  23. 23.

    Stoffels, E., Gonzalvo, Y.A., Whitmore, T.D., Seymour, D.L., Rees, J.A.: A plasma needle generates nitric oxide. Plasma Sour. Sci. Technol. 15, 501–506 (2006)

    ADS  Article  Google Scholar 

  24. 24.

    Jin, D.J., Uhm, H.S., Cho, G.: Influence of the gas-flow Reynolds number on a plasma column in a glass tube. Phys. Plasmas 20(8), 083513 (2013)

    ADS  Article  Google Scholar 

  25. 25.

    Haynes, W.M. (ed.): CRC Handbook of Chemistry and Physics. Taylor & Francis Group, Cambridge (2013)

    Google Scholar 

  26. 26.

    Ashpis, D.E., Laun, M.C., Griebeler, E.L.: Progress toward accurate measurement of dielectric barrier discharge plasma actuator power. J. AIAA 55(7), 2254–2268 (2017)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sayyed-Jalal Pestehe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, D., Pestehe, SJ. The effects of grounded electrode geometry on RF-driven cold atmospheric pressure plasma micro-jet. J Theor Appl Phys 14, 387–398 (2020). https://doi.org/10.1007/s40094-020-00395-0

Download citation

Keywords

  • Atmospheric pressure plasma jet
  • DBD-like
  • Grounded electrode geometry
  • Jet length
  • Electrode shape