Comparative study of behavior of electrical conductivity in KI‒Al2O3 and KI‒TiO2 heterostructure composites


The present work reports development of binary KI–Al2O3 and KI–TiO2-based nanocomposites using simple solid-state reaction method and is characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy and impedance spectroscopy. The results show the effect of heterogeneously doped Al2O3 and TiO2 on the ionic conductivity of pure KI which is moderately conductive. The results supported the composite development in which the interface layer portrays a significant part in governing the bulk properties of the compound. Improvement in electrical conductivity is seen in the incorporation of Al2O3 and TiO2 dispersoid into the matrix of KI. With temperature, electrical conductivity increased and the activation energies were found to be decreasing. The activation energies for KI–Al2O3 and KI–TiO2 systems were 0.22 eV and 0.21 eV, respectively, in the temperature range 20‒400 °C. Dielectric constant increases with the increase in temperature in the entire temperature range studied attributed to the phenomenon of distortion of electric charges.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Pirzada, B.M., Mir, N.A., Qutub, N., Mehraj, O., Sabir, S., Muneer, M.: Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures. Mater. Sci. Eng., B 193, 137–145 (2015)

    Google Scholar 

  2. 2.

    Shafi, A., Ahmad, N., Sultana, S., Sabir, S., Khan, M.Z.: Ag2S-sensitized NiO − ZnO heterostructures with enhanced visible light photocatalytic activity and acetone sensing property. ACS Omega 4, 12905–12918 (2019)

    Google Scholar 

  3. 3.

    Wani, S.I.: Rafiuddin: synthesis, properties and application of titania incorporated potassium iodoplumbite nanocomposite solid electrolyte for the manufacture of high value capacitors. Electrochim. Acta 342, 136097 (2020)

    Google Scholar 

  4. 4.

    Zare, M., Solaymani, S., Shafiekhani, A., Kulesza, S., Talu, S., Bromowicz, M.: Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting. Sci. Rep. 8, 10870 (2018)

    ADS  Google Scholar 

  5. 5.

    Sultana, S.: Rafiuddin: electrical conductivity in TlI-TiO2 composite solid electrolyte. Phys. B Condens. Matter. 404, 36–40 (2009)

    ADS  Google Scholar 

  6. 6.

    Sultana, S., Rafiuddin, R.: Enhancement of ionic conductivity in the composite solid electrolyte system: TlI-Al2O3. Ionics 15, 621–625 (2009)

    Google Scholar 

  7. 7.

    Uvarov, N.F., Vaněk, P., Yuzyuk, Y.I., Železný, V., Studnička, V., Bokhonov, B.B., Dulepov, V.E., Petzelt, J.: Properties of rubidium nitrate in ion-conducting RbNO3–Al2O3 nanocomposites. Solid State Ion. 90, 201–207 (1996)

    Google Scholar 

  8. 8.

    Jander, W.: Neuere Forschungen über Diffusion und elektrische Leitfähigkeit fester Salze. Zeitschrift Für Angew. Chemie. 42, 462–467 (1929)

    Google Scholar 

  9. 9.

    Liang, C.C.: Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. J. Electrochem. Soc. 120, 1289 (1973)

    ADS  Google Scholar 

  10. 10.

    Wagner, J.B.: Transport in compounds containing a dispersed second phase. Mater. Res. Bull. 15, 1691–1701 (1980)

    Google Scholar 

  11. 11.

    Wieczorek, W.: Entropy effects on conductivity of the blend-based and composite polymer solid electrolytes. Solid State Ion. 53–56, 1064–1070 (1992)

    Google Scholar 

  12. 12.

    Valverde-Diez, N., Wagner, J.B.: Electronic conduction in AgI(Al2O3) composites. Solid State Ion. 34, 175–179 (1989)

    Google Scholar 

  13. 13.

    Tadanaga, K., Imai, K., Tatsumisago, M., Minami, T.: Preparation of AgI–Al2O3 composites with high ionic conductivity using Al2O3 aerogel and xerogel. J. Electrochem. Soc. 147, 4061 (2000)

    ADS  Google Scholar 

  14. 14.

    Shahi, K., Wagner, J.B.: Enhanced ionic conduction in dispersed solid electrolyte systems (DSES) and/or multiphase systems: Agl–Al2O3, Agl–SiO2, Agl–Fly ash, and Agl–AgBr. J. Solid State Chem. 42, 107–119 (1982)

    ADS  Google Scholar 

  15. 15.

    Wagner, C.: The electrical conductivity of semi-conductors involving inclusions of another phase. J. Phys. Chem. Solids 33, 1051–1059 (1972)

    ADS  Google Scholar 

  16. 16.

    Takahashi, T., Teaneck, N.J., Wagner Jr., J.B.: High conductivity solid ionic conductors: recent trends and applications. World Scientific, Singapore (1989)

    Google Scholar 

  17. 17.

    Mhiri, T., Colomban, P.: Defect-induced smoothing of the superionic phase transition in Cs1−XMXHSO4 protonic conductors. III. Rubidium substitution. Solid State Ion. 44, 235–243 (1991)

    Google Scholar 

  18. 18.

    Uvarov, N.F., Isupov, V.P., Sharma, V., Shukla, A.K.: Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes. Solid State Ion. 51, 41–52 (1992)

    Google Scholar 

  19. 19.

    Uvarov, N.F., Bokhonov, B.B., Isupov, V.P., Hairetdinov, E.F.: Nanocomposite ionic conductors in the Li2SO4–A12O3 system. Solid State Ion. 74, 15–27 (1994)

    Google Scholar 

  20. 20.

    Maier, J.: Space charge regions in solid two-phase systems and their conduction contribution-I. Conductance enhancement in the system ionic conductor-‘inert’ phase and application on AgC1:A12O3, and AgCl:SiO2. J. Phys. Chem. Solids 46, 309–320 (1985)

    ADS  Google Scholar 

  21. 21.

    Huang, J., Bartell, L.S.: Structure and properties of potassium iodide nanoparticles. A molecular dynamics study. J. Mol. Struct. 567–568, 145–156 (2001)

    ADS  Google Scholar 

  22. 22.

    Noor, M.M., Buraidah, M.H., Yusuf, S.N.F., Careem, M.A., Majid, S.R., Arof, A.K.: Performance of dye-sensitized solar cells with (PVDF-HFP)-KI-EC-PC electrolyte and different dye materials. Int. J. Photoenergy 2011, 1–5 (2011)

    Google Scholar 

  23. 23.

    Aziz, M.F., Noor, I.M., Sahraoui, B., Arof, A.K.: Dye-sensitized solar cells with PVA–KI–EC–PC gel electrolytes. Opt. Quantum Electron. 46, 133–141 (2014)

    Google Scholar 

  24. 24.

    Achour, A., Islam, M., Solaymani, S., Vizireanu, S., Saeed, K., Dinescu, G.: Influence of plasma functionalization treatment and gold nanoparticles on surface chemistry and wettability of reactive-sputtered TiO2 thin films. Appl. Surf. Sci. 458, 678–685 (2018)

    ADS  Google Scholar 

  25. 25.

    Sultana, S.: Rafiuddin: behaviour of electrical conductivity in CsI–Al2O3 and CsI–TiO2 systems. Arab. J. Chem. 9, S170–S176 (2016)

    Google Scholar 

  26. 26.

    Yu, D.H., Yu, X., Wang, C., Liu, X.C., Xing, Y.: Synthesis of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties. ACS Appl. Mater. Interfaces. 4, 2781–2787 (2012)

    Google Scholar 

  27. 27.

    Nie, A., Yang, H., Li, Q., Fan, X., Qiu, F., Zhang, X.: Catalytic oxidation of chlorobenzene over V2O5/TiO2–carbon nanotubes composites. Ind. Eng. Chem. Res. 50, 9944–9948 (2011)

    Google Scholar 

  28. 28.

    Rao, M.V.M., Reddy, S.N., Chary, A.S.: DC ionic conductivity of NaNO3: γ-Al2O3 composite solid electrolyte system. Phys. B: Condens. Matter 362, 193–198 (2005)

    ADS  Google Scholar 

  29. 29.

    Nadimicherla, R., Kalla, R., Muchakayala, R., Guo, X.: Effects of potassium iodide (KI) on crystallinity, thermal stability, and electrical properties of polymer blend electrolytes (PVC/PEO:KI). Solid State Ion. 278, 260–267 (2015)

    Google Scholar 

  30. 30.

    Ramesh, S., Sominska, E., Cina, B., Chaim, R., Gedanken, A.: Nanocrystalline γ-alumina synthesized by sonohydrolysis of alkoxide precursor in the presence of organic acids: structure and morphological properties. J. Am. Ceram. Soc. 94, 89–94 (2000)

    Google Scholar 

  31. 31.

    Kan, Y., Wang, P., Li, Y., Cheng, Y.-B., Yan, D.: Low-temperature sintering of Bi4Ti3O12 derived from a co-precipitation method. Mater. Lett. 56, 910–914 (2002)

    Google Scholar 

  32. 32.

    Zeeshan, N.: Rafiuddin: solid electrolytes based on {1 − (x + y)}ZrO2-(x)MgO-(y)CaO ternary system: preparation, characterization, ionic conductivity, and dielectric properties. J. Adv. Res. 9, 35–41 (2018)

    Google Scholar 

  33. 33.

    Desvals, M.A., Knauth, P.: Study of two-phase mixtures copper (I) bromide-alumina by impedance spectroscopy. J. Phys. Chem. Solids 58, 319–324 (1997)

    ADS  Google Scholar 

  34. 34.

    Uvarov, N.F., Vaněk, P.: Stabilization of new phases in ion-conducting nanocomposites. J. Mater. Synth. Process. 8, 319–326 (2000)

    Google Scholar 

  35. 35.

    Dygas, J.R., Malys, M., Krok, F., Wrobel, W., Kozanecka, A., Abrahams, I.: Polycrystalline BIMGVOX.13 studied by impedance spectroscopy. Solid State Ion. 176, 2085–2093 (2005)

    Google Scholar 

  36. 36.

    Iqbal, M.Z.: Rafiuddin: preparation, characterization, electrical and dielectric properties of (1 − x) (PbI2–Ag2CrO4)–xTiO2 composite solid electrolytes. Ceram. Int. 41, 13650–13657 (2015)

    Google Scholar 

  37. 37.

    Wani, S.I., Rafiuddin, R.: Impedance spectroscopy and conductivity studies of KCl-doped solid electrolyte. J. Theor. Appl. Phys. 12, 141–146 (2018)

    ADS  Google Scholar 

  38. 38.

    Wani, S.I.: Rafiuddin: structural, thermal, and electrical behavior of Cu-substituted KPbI3 ternary compound. Russ. J. Phy. Chem. A 92, 2811–2816 (2018)

    Google Scholar 

  39. 39.

    Wu, M.-S., Hsieh, H.-H.: Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors. Electrochim. Acta 53, 3427–3435 (2008)

    Google Scholar 

  40. 40.

    Onwudiwe, D.C., Arfin, T., Strydom, C.A.: Fe(II) and Fe(III) complexes of N-ethyl-N-phenyl dithiocarbamate: electrical conductivity studies and thermal properties. Electrochim. Acta 127, 283–289 (2014)

    Google Scholar 

  41. 41.

    Thambidurai, M., Muthukumarasamy, N., Velauthapillai, D., Agilan, S., Balasundaraprabhu, R.: Impedance spectroscopy and dielectric properties of cobalt doped CdS nanoparticles. Powder Technol. 217, 1–6 (2012)

    Google Scholar 

  42. 42.

    Knauth, P.: Ionic conductor composites: theory and materials. J. Electroceram. 5, 111–125 (2000)

    Google Scholar 

  43. 43.

    Pandey, K., Dwivedi, M.M., Singh, M., Agrawal, S.L.: Studies of dielectric relaxation and a.c. conductivity in [(100 − x)PEO + xNH4SCN]: Al–Zn ferrite nano composite polymer electrolyte. J. Poly. Res. 17, 127–133 (2010)

    Google Scholar 

  44. 44.

    Haldar, I., Biswas, M., Nayak, A.: Preparation and evaluation of microstructure, dielectric and conductivity (ac/dc) characteristics of a polyaniline/poly N-vinyl carbazole/Fe3O4 nanocomposite. J. Polym. Res. 19, 9951–9959 (2012)

    Google Scholar 

  45. 45.

    Gabal, M.A., Al Angari, Y.M.: Effect of diamagnetic substitution on the structural, magnetic and electrical properties of NiFe2O4. Mater. Chem. Phys. 115, 578–584 (2009)

    Google Scholar 

  46. 46.

    El Ghanem, H.M., Abdul Jawad, S., Al-Saleh, M.H., Hussain, Y.A., Salah, W.: Effect of dc-bias on the dielectric behavior of CNT/ABS nanocomposites. Phys. B Condens. Matter. 418, 41–46 (2013)

    ADS  Google Scholar 

  47. 47.

    Godselahi, T., Vesaghi, M.A., Gelali, A., Zahrabi, H., Solaymani, S.: Morphology, optical and electrical properties of Cu–Ni nanoparticles in a-C: H prepared by co-deposition of RF-sputtering and RF-PECVD. Appl. Surf. Sci. 258(2), 727–731 (2011)

    ADS  Google Scholar 

  48. 48.

    Ahmed, R., Moslehuddin, A.S.M., Mahmood, Z.H., Hossain, A.K.M.A.: Weak ferromagnetism and temperature dependent dielectric properties of Zn0.9Ni0.1O diluted magnetic semiconductor. Mater. Res. Bull. 63, 32–40 (2015)

    Google Scholar 

Download references


Authors are highly grateful to Aligarh Muslim University, Aligarh, for making available all mandatory research facilities. UGC is to be thanked for providing financial assistance. We also thank Jamia Millia Islamia, New Delhi, for XRD characterization.

Author information



Corresponding author

Correspondence to Rafiuddin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wani, S.I., Zeeshan, N. & Rafiuddin Comparative study of behavior of electrical conductivity in KI‒Al2O3 and KI‒TiO2 heterostructure composites. J Theor Appl Phys 14, 377–385 (2020).

Download citation


  • Solid composites
  • X-ray diffraction
  • Impedance spectroscopy
  • Ionic conductivity
  • Dielectric constant