Tunable and reversible thermo-plasmonic hot spot imaging for temperature confinement

Abstract

In the present study, a novel tunable two-dimensional thermo-plasmonic grating based on gold nanorods was demonstrated by combining the plasmonic properties of the gold nanostructure and the applied external voltage. In this structure, a thin layer of the gold grating was typically deposited on a patterned polydimethylsiloxane substrate using the nanoimprint lithography method. The surface plasmon resonance of the fabricated plasmonic structure was excited by the surface plasmon imaging system based on a high numerical aperture objective lens and the charged coupled device camera. Based on the results, the number of the plasmonic hot spots due to the thermo-plasmonic effect increased by the external voltage, leading to an increase in this effect. Therefore, this reversible and tunable temperature confinement can be used as the controller of each element including cells in a defined micro-position.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Rodríguez-Oliveros, R., Sánchez-Gil, J.A.: Gold nanostars as thermoplasmonic nanoparticles for optical heating. Opt. Express 20(1), 621–626 (2012)

    ADS  Article  Google Scholar 

  2. 2.

    Baffou, G., Quidant, R.: Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7(2), 171–187 (2013)

    ADS  Article  Google Scholar 

  3. 3.

    Baffou, G., Quidant, R., Javier García de Abajo, F.: Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4(2), 709–716 (2010)

    Article  Google Scholar 

  4. 4.

    Han, G., Ghosh, P., De, M., Rotello, V.M.: Drug and gene delivery using gold nanoparticles. NanoBiotechnology 3(1), 40–45 (2007)

    Article  Google Scholar 

  5. 5.

    Han, G., Ghosh, P., De, M., Rotello, V.M.: Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60(11), 1307–1315 (2008)

    Article  Google Scholar 

  6. 6.

    Choi, J., Yang, J., Jang, E., Suh, J.-S., Huh, Y.-M., Lee, K., Haam, S.: Gold nanostructures as photothermal therapy agent for cancer. Anticancer Agents Med. Chem. 11(10), 953–964 (2011)

    Article  Google Scholar 

  7. 7.

    Ahmad, R., Fu, J., He, N., Li, S.: Advanced gold nanomaterials for photothermal therapy of cancer. J. Nanosci. Nanotechnol. 16(1), 67–80 (2016)

    Article  Google Scholar 

  8. 8.

    Boyer, D., Tamarat, P., Maali, A., Lounis, B., Orrit, M.: Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584), 1160–1163 (2002)

    ADS  Article  Google Scholar 

  9. 9.

    Cao, L., Barsic, D.N., Guichard, A.R., Brongersma, M.L.: Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett. 7(11), 3523–3527 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    Palermo, G., Cataldi, U., Pezzi, L., Bürgi, T., Umeton, C., De Luca, A.: Thermo-plasmonic effects on E7 nematic liquid crystal. Mol. Cryst. Liq. Cryst. 649(1), 45–49 (2017)

    Article  Google Scholar 

  11. 11.

    Herzog, J.B., Knight, M.W., Natelson, D.: Thermoplasmonics: quantifying plasmonic heating in single nanowires. Nano Lett. 14(2), 499–503 (2014)

    ADS  Article  Google Scholar 

  12. 12.

    Gatea, M.A., Jawad, H.A., Hamidi, S.M.: Detecting the thermoplasmonic effect using ellipsometry parameters for self-assembled gold nanoparticles within a polydimethylsiloxane matrix. Appl. Phys. A 125(2), 103 (2019)

    ADS  Article  Google Scholar 

  13. 13.

    Baffou, G., Berto, P., BermúdezUreña, E., Quidant, R., Monneret, S., Polleux, J., Rigneault, H.: Photoinduced heating of nanoparticle arrays. ACS Nano 7(8), 6478–6488 (2013)

    Article  Google Scholar 

  14. 14.

    Baffou, G., Bon, P., Savatier, J., Polleux, J., Zhu, M., Merlin, M., Rigneault, H., Monneret, S.: Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6(3), 2452–2458 (2012)

    Article  Google Scholar 

  15. 15.

    Mbarak, H., Hamidi, S.M., Mohajerani, E., Zaatar, Y.: Electrically driven flexible 2D plasmonic structure based on a nematic liquid crystal. J. Phys. D Appl. Phys. 52(41), 415106–415110 (2019)

    Article  Google Scholar 

  16. 16.

    Palermo, G., Cataldi, U., De Sio, L., Bürgi, T., Tabiryan, N., Umeton, C.: Optical control of plasmonic heating effects using reversible photo-alignment of nematic liquid crystals. Appl. Phys. Lett. 109(19), 191906 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    Palermo, G., Sio, L.D., Placido, T., Comparelli, R., Curri, M.L., Bartolino, R., Umeton, C.: Plasmonic thermometer based on thermotropic liquid crystals. Mol. Cryst. Liq. Cryst. 614(1), 93–99 (2015)

    Article  Google Scholar 

  18. 18.

    Kodeary, A., Hamidi, S.M.: Tunable piezophotonic effect on core–shell nanoparticles prepared by laser ablation in liquids under external voltage. J. Nanotechnol. (2019). https://doi.org/10.1155/2019/6046079

    Article  Google Scholar 

  19. 19.

    Hamidi, S.M., Mosaeii, B., Afsharnia, M., Aftabi, A., Najafi, M.: Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor. J. Magn. Magn. Mater. 417, 413–419 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    Chu, K.C., Chao, C.Y., Chen, Y.F., Wu, Y.C., Chen, C.-C.: Electrically controlled surface plasmon resonance frequency of gold nanorods. Appl. Phys. Lett. 89(10), 103107 (2006)

    ADS  Article  Google Scholar 

  21. 21.

    Hoang, T.B., Mikkelsen, M.H.: Broad electrical tuning of plasmonic nanoantennas at visible frequencies. Appl. Phys. Lett. 108(18), 183107 (2016)

    ADS  Article  Google Scholar 

  22. 22.

    Asgari, N., Hamidi, S.M.: Exciton-plasmon coupling in two-dimensional plexitonic nano grating. Opt. Mater. 81, 45–54 (2018)

    ADS  Article  Google Scholar 

  23. 23.

    Haddawi, S.F., Mirahmadi, M., Mbarak, H., Kodeary, A.K., Ghasemi, M., Hamidi, S.M.: Footprint of plexitonic states in low power green blue plasmonic random laser. Appl. Phys. A 125(12), 843–846 (2019)

    ADS  Article  Google Scholar 

  24. 24.

    Kano, H., Mizuguchi, S., Kawata, S.: Excitation of surface-plasmon polaritons by a focused laser beam. JOSA B 15(4), 1381–1386 (1998)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Hamidi.

Ethics declarations

Conflict of interest

There is no any conflicts of interest between authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shnan, N.S., Roostaei, N. & Hamidi, S.M. Tunable and reversible thermo-plasmonic hot spot imaging for temperature confinement. J Theor Appl Phys 14, 367–376 (2020). https://doi.org/10.1007/s40094-020-00393-2

Download citation

Keywords

  • Plasmonic imaging system
  • Plasmonic hot spot
  • 2D grating
  • Nanoimprint lithography
  • Temperature confinement