The effects of multiwall carbon nanotubes on the electrical characteristics of ZnO-based composites

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


In this experimental work, the effects of multiwall carbon nanotubes (MWCNTs) on electrical characteristics of zinc oxide–MWCNT–high-density polyethylene composite varistors have been investigated. All the samples were made at the temperature of 130 °C and pressure of 60 MPa by the hot-press method. Results show that increasing zinc oxide content in the mixture increases breakdown voltage up to 170 V, where the highest nonlinear coefficient (α ~ 13) corresponds to the samples with 95 wt% of ZnO. Results with regard to the effects of MWCNT as an additive reveal that increasing its content from 1 to 2.5% in the composites, the breakdown voltage decreases to 50 V, but the highest nonlinear coefficient (~ 14) corresponds to the sample with 1.5% of MWCNT content. It is also revealed that, heat treatment of the sample at a constant temperature of 135 °C and different time intervals from 2 to 10 h, the sample with 6 h annealing time shows maximum breakdown voltages (Vb = 140 V) with the highest nonlinear coefficient (~ 14). Investigation of the potential barrier height of samples shows a complete consistency with the breakdown voltage variations. The results have been justified regarding XRD patterns and SEM micrographs of samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Clarke, D.R.: Varistor ceramics. J. Am. Ceram. Soc. 82, 485–502 (1999)

    Google Scholar 

  2. 2.

    Gupta, T.K.: Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)

    Google Scholar 

  3. 3.

    Franco Jr., A., Pessoni, H.V.S.: Enhanced dielectric constant of Co-doped ZnO nanoparticulate powders. Phys. B Condens. Matter 476, 12–18 (2015)

    ADS  Google Scholar 

  4. 4.

    Jumidali, M.M., Hashim, M.R.: Modified thermal evaporation process using GeO2 for growing ZnO structures. Superlattices Microstruct. 52, 33–40 (2012)

    ADS  Google Scholar 

  5. 5.

    Yousefi, R., Kamaluddin, B.: Dependence of photoluminescence peaks and ZnO nanowires diameter grown on silicon substrates at different temperatures and orientations. J. Alloys Compd. 479, L11–L14 (2009)

    Google Scholar 

  6. 6.

    Shibata, T., Unno, K., Makino, E., Ito, Y., Shimada, S.: Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe. Sens. Actuators A Phys. 102, 106–113 (2002)

    Google Scholar 

  7. 7.

    Amornpitoksuk, P., Suwanboon, S., Sangkanu, S., Sukhoom, A., Muensit, N.: Morphology, photocatalytic and antibacterial activities of radial spherical ZnO nanorods controlled with a diblock copolymer. Superlattices Microstruct. 51, 103–113 (2012)

    ADS  Google Scholar 

  8. 8.

    Matsubara, K., Fons, P., Iwata, K., Yamada, A., Sakurai, K., Tampo, H., Niki, S.: ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Films 431, 369–372 (2003)

    ADS  Google Scholar 

  9. 9.

    Vishwas, M., Rao, K.N., Gowda, K.V.A., Chakradhar, R.P.S.: Optical, electrical and dielectric properties of TiO2–SiO2 films prepared by a cost effective sol–gel process. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 83, 614–617 (2011)

    ADS  Google Scholar 

  10. 10.

    Levinson, L., Philipp, H.: ZnO varistors for transient protection. IEEE Trans. Parts Hybrids Packag. 13, 338–343 (1977)

    Google Scholar 

  11. 11.

    Nahm, C.-W.: Effect of sintering temperature on microstructure and electrical properties of Zn·Pr·Co·Cr·La oxide-based varistors. Mater. Lett. 60, 3394–3397 (2006)

    Google Scholar 

  12. 12.

    Žitnik, B., Babuder, M., Muhr, M., Žitnik, M., Thottappillil, R.: Numerical modelling of metal oxide varistors. In: Proceedings of the XIV th International Symposium on High Voltage Engineering. pp. 25–29 (2005)

  13. 13.

    Matsuoka, M.: Nonohmic properties of zinc oxide ceramics. Jpn. J. Appl. Phys. 10, 736 (1971)

    ADS  Google Scholar 

  14. 14.

    Gupta, T.K., Mathur, M.P., Carlson, W.G.: Effect of externally applied pressure on zinc oxide varistors. J. Electron. Mater. 6, 483–497 (1977)

    ADS  Google Scholar 

  15. 15.

    Chen, G., Yuan, C., Yang, Y.: The nonlinear electrical behavior of ZnO-based varistor ceramics with CaSiO3 addition. J. Mater. Sci. 49, 758–765 (2014)

    ADS  Google Scholar 

  16. 16.

    Yang, Y., Zhang, X., Gao, M., Zeng, F., Zhou, W., Xie, S., Pan, F.: Nonvolatile resistive switching in single crystalline ZnO nanowires. Nanoscale 3, 1917–1921 (2011)

    ADS  Google Scholar 

  17. 17.

    Li, S., Li, J., Liu, W., Lin, J., He, J., Cheng, P.: Advances in ZnO varistors in China during the past 30 years—fundamentals, processing, and applications. IEEE Electr. Insul. Mag. 31, 35–44 (2015)

    ADS  Google Scholar 

  18. 18.

    Lee, Y., Tseng, T.: Phase identification and electrical properties in ZnO–glass varistors. J. Am. Ceram. Soc. 75, 1636–1640 (1992)

    Google Scholar 

  19. 19.

    Kim, E.D., Kim, C.H., Oh, M.H.: Role and effect of Co2O3 additive on the upturn characteristics of ZnO varistors. J. Appl. Phys. 58, 3231–3235 (1985)

    ADS  Google Scholar 

  20. 20.

    Hembram, K., Sivaprahasam, D., Rao, T.N.: Combustion synthesis of doped nanocrystalline ZnO powders for varistors applications. J. Eur. Ceram. Soc. 31, 1905–1913 (2011)

    Google Scholar 

  21. 21.

    Ghafouri, M., Parhizkar, M., Bidadi, H., Aref, S.M., Olad, A.: Effect of Si content on electrophysical properties of Si-polymer composite varistors. Mater. Chem. Phys. 147, 1117–1122 (2014)

    Google Scholar 

  22. 22.

    Bidadi, H., Aref, S.M., Ghafouri, M., Parhizkar, M., Olad, A.: Effect of changing Gallium arsenide content on Gallium arsenide–polymer composite varistors. J. Phys. Chem. Solids 74, 1169–1173 (2013)

    ADS  Google Scholar 

  23. 23.

    Aref, S.M., Olad, A., Parhizkar, M., Ghafouri, M., Bidadi, H.: Effect of polyaniline content on electrophysical properties of gallium arsenide–polymer composite varistors. Solid State Sci. 26, 128–133 (2013)

    Google Scholar 

  24. 24.

    Yang, W., Wang, J., Luo, S., Yu, S., Huang, H., Sun, R., Wong, C.-P.: ZnO-decorated carbon nanotube hybrids as fillers leading to reversible nonlinear IV behavior of polymer composites for device protection. ACS Appl. Mater. Interfaces 8, 35545–35551 (2016)

    Google Scholar 

  25. 25.

    Sun, W.-J., Liu, J.-R., Yao, D.-C., Chen, Y., Wang, M.-H.: Synthesis of carbon-coated ZnO composite and varistor properties study. J. Electron. Mater. 46, 1908–1913 (2017)

    ADS  Google Scholar 

  26. 26.

    Dmitriev, V., Gomes, F., Nascimento, C.: Nanoelectronic devices based on carbon nanotubes. J. Aerosp. Technol. Manag. 7, 53–62 (2015)

    Google Scholar 

  27. 27.

    Ibrahim, K.S.: Carbon nanotubes-properties and applications: a review. Carbon Lett. 14, 131–144 (2013)

    Google Scholar 

  28. 28.

    Saeed, K., Khan, I.: Preparation and characterization of single-walled carbon nanotube/nylon 6, 6 nanocomposites. Instrum. Sci. Technol. 44, 435–444 (2016)

    Google Scholar 

  29. 29.

    Saeed, K., Khan, I.: Preparation and properties of single-walled carbon nanotubes/poly (butylene terephthalate) nanocomposites. Iran. Polym. J. 23, 53–58 (2014)

    Google Scholar 

  30. 30.

    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    ADS  Google Scholar 

  31. 31.

    Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)

    ADS  Google Scholar 

  32. 32.

    Abrahamson, J., Wiles, P.G., Rhoades, B.L.: Structure of carbon fibres found on carbon arc anodes. Carbon N. Y. 11, 1873–1874 (1999)

    Google Scholar 

  33. 33.

    Hirlekar, R., Yamagar, M., Garse, H., Vij, M., Kadam, V.: Carbon nanotubes and its applications: a review. Asian J. Pharm. Clin. Res. 2, 17–27 (2009)

    Google Scholar 

  34. 34.

    Meyyappan, M., Delzeit, L., Cassell, A., Hash, D.: Carbon nanotube growth by PECVD: a review. Plasma Sour. Sci. Technol. 12, 205 (2003)

    ADS  Google Scholar 

  35. 35.

    Grigoriadou, I., Paraskevopoulos, K.M., Chrissafis, K., Pavlidou, E., Stamkopoulos, T.-G., Bikiaris, D.: Effect of different nanoparticles on HDPE UV stability. Polym. Degrad. Stab. 96, 151–163 (2011)

    Google Scholar 

  36. 36.

    Tanniru, M., Yuan, Q., Misra, R.D.K.: On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer (Guildf) 47, 2133–2146 (2006)

    Google Scholar 

  37. 37.

    Jeon, K., Lumata, L., Tokumoto, T., Steven, E., Brooks, J., Alamo, R.G.: Low electrical conductivity threshold and crystalline morphology of single-walled carbon nanotubes–high density polyethylene nanocomposites characterized by SEM. Raman spectrosc. AFM. Polym. (Guildf) 48, 4751–4764 (2007)

    Google Scholar 

  38. 38.

    Dilara, P.A., Briassoulis, D.: Degradation and stabilization of low-density polyethylene films used as greenhouse covering materials. J. Agric. Eng. Res. 76, 309–321 (2000)

    Google Scholar 

  39. 39.

    Eda, K.: Conduction mechanism of non-Ohmic zinc oxide ceramics. J. Appl. Phys. 49, 2964–2972 (1978)

    ADS  Google Scholar 

  40. 40.

    Levinson, L.M., Philipp, H.R.: Metal oxide varistor—a multijunction thin-film device. Appl. Phys. Lett. 24, 75–76 (1974)

    ADS  Google Scholar 

  41. 41.

    Levinson, L.M., Philipp, H.R.: The physics of metal oxide varistors. J. Appl. Phys. 46, 1332–1341 (1975)

    ADS  Google Scholar 

  42. 42.

    Levinson, L.M., Philipp, H.R.: Conduction mechanisms in metal oxide varistors. J. Solid State Chem. Fr. 12, 292 (1975)

    ADS  Google Scholar 

  43. 43.

    Philipp, H.R., Levinson, L.M.: Tunneling of photoexcited carriers in metal oxide varistors. J. Appl. Phys. 46, 3206–3207 (1975)

    ADS  Google Scholar 

Download references


The financial support for this work from the University of Tabriz, Iran, is gratefully acknowledged.

Author information



Corresponding author

Correspondence to M. Parhizkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asaadi, N., Parhizkar, M., Bidadi, H. et al. The effects of multiwall carbon nanotubes on the electrical characteristics of ZnO-based composites. J Theor Appl Phys 14, 329–337 (2020).

Download citation


  • Multiwall carbon nanotube
  • ZnO
  • Composite varistor
  • Nonlinear coefficient