The effect of mixed electric field on characteristic of ozone generation in a DBD plasma source

Abstract

In this paper, we have presented a new power supply structure for ozone generation in a dielectric barrier discharge reactor, so that a high-frequency pulse electric field is applied on the reactor simultaneously with a low-frequency sinusoidal electric field, referred as mixed electric field. In this study, the effect of mixed electric field variation on ozone production efficiency has been investigated and increasing effects on ozone production have been observed when the reactor temperature decreases. This performance has been achieved by modifying the mechanism of electrical discharge and decrease in filamentary discharge in plasma. By examining the spectral lines of atomic emission spectroscopy, the highest peak of the oxygen (O I) spectral lines was observed in the spectrum of the mixed electric field structure. Also by qualitative comparison of the spectral lines, the lowest intensity for the oxygen (O II) spectral lines was observed in this spectrum. Practically, this technique allows us to achieve higher ozone efficiency with less electrical power. Eventually, with the electric field mixing, we were able to achieve a 4.5% efficiency with 7.7 g/h of ozone generation at 2 kW/m2 with 2 L/min injector oxygen. In addition, by electric field mixing, we were able to reduce the reactor temperature from 66 to 41 °C.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Yamamoto, H., et al.: Pilot-scale NOx and SOx aftertreatment using a two-phase ozone and chemical injection in glass-melting-furnace exhaust gas. IEEE Trans. Ind. Appl. 55(6), 6295–6302 (2019)

    Google Scholar 

  2. 2.

    Alves Filho, E., et al.: An untargeted chemometric evaluation of plasma and ozone processing effect on volatile compounds in orange juice. Innov. Food Sci. Emerg. Technol. 53, 63–69 (2019)

    Google Scholar 

  3. 3.

    Crema, A.P.S., et al.: Degradation of indigo carmine in water induced by non-thermal plasma, ozone and hydrogen peroxide: a comparative study and by-product identification. Chemosphere 244, 125502 (2020)

    ADS  Google Scholar 

  4. 4.

    Madhukar, A., Rajanikanth, B.: Cascaded plasma-ozone injection system: a novel approach for controlling total hydrocarbon emission in diesel exhaust. Plasma Chem. Plasma Process. 39(4), 845–862 (2019)

    Google Scholar 

  5. 5.

    Abdelaziz, A.A., et al.: Quantitative analysis of ozone and nitrogen oxides produced by a low power miniaturized surface dielectric barrier discharge: effect of oxygen content and humidity level. Plasma Chem. Plasma Process. 39(1), 165–185 (2019)

    Google Scholar 

  6. 6.

    Fan, R., et al.: Effect of the reaction temperature on the removal of diesel particulate matter by ozone injection. Plasma Chem. Plasma Process. 39(1), 143–163 (2019)

    Google Scholar 

  7. 7.

    Yamasaki, H., et al.: Plasma-chemical hybrid NOx removal in flue gas from semiconductor manufacturing industries using a blade-dielectric barrier-type plasma reactor. Energies 12(14), 2717 (2019)

    Google Scholar 

  8. 8.

    Kuvshinov, D., et al.: Efficient compact micro DBD plasma reactor for ozone generation for industrial application in liquid and gas phase systems. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 8(1), 80–83 (2020)

    Google Scholar 

  9. 9.

    Nemmich, S., et al.: Experimental analysis of the influence of the voltage waveform on ozone generation efficiency. Int. J. Environ. Stud. 76(4), 571–581 (2019)

    Google Scholar 

  10. 10.

    Wei, L., Deng, Q., Zhang, Y.: Ozone generation enhanced by silica catalyst in oxygen-fed dielectric barrier discharge. Vacuum 173, 109145 (2020)

    ADS  Google Scholar 

  11. 11.

    Wu, Q., et al.: Current balancing of paralleled SiC MOSFETs for a resonant pulsed power converter. IEEE Trans. Power Electron. 35, 5557–5561 (2019)

    ADS  Google Scholar 

  12. 12.

    Samaranayake, W., et al.: Pulsed streamer discharge characteristics of ozone production in dry air. IEEE Trans. Dielectr. Electr. Insul. 7(2), 254–260 (2000)

    Google Scholar 

  13. 13.

    Wei, L., Xu, M., Zhang, Y.: Energy conversion and temperature dependence in ozone generator using pulsed discharge in oxygen. Ozone Sci. Eng. 39(1), 33–43 (2017)

    Google Scholar 

  14. 14.

    Selma, M.V., et al.: Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry. Food Microbiol. 25(6), 809–814 (2008)

    Google Scholar 

  15. 15.

    Pavlovich, M.J., et al.: Ozone correlates with antibacterial effects from indirect air dielectric barrier discharge treatment of water. J. Phys. D Appl. Phys. 46(14), 145202 (2013)

    ADS  Google Scholar 

  16. 16.

    Jodzis, S., Barczyński, T.: Ozone synthesis and decomposition in oxygen-fed pulsed DBD system: effect of ozone concentration, power density, and residence time. Ozone Sci. Eng. 41(1), 69–79 (2019)

    Google Scholar 

  17. 17.

    Zhang, Y., et al.: Ozone production in coaxial DBD using an amplitude-modulated AC power supply in air. Ozone Sci. Eng. 41(5), 437–447 (2019)

    ADS  Google Scholar 

  18. 18.

    Baloul, Y., et al.: Experimental assessment of ozone production by multichannel plasma discharges for automotive applications. J. Phys. D Appl. Phys. 52(27), 275204 (2019)

    Google Scholar 

  19. 19.

    Alhamid, M.I., et al.: Performance analysis and water quality after ozone application in closed circuit cooling tower systems. In: AIP Conference Proceedings. AIP Publishing LLC (2019)

  20. 20.

    Hidaka, H., et al.: Characteristics of nanosecond pulsed discharge type ozonizer with a tube to cylinder reactor. In: 2019 IEEE Pulsed Power and Plasma Science (PPPS). IEEE (2019)

  21. 21.

    Sanuki, Y., et al.: Investigation of energy control in coaxial reactor for ozone production by using nanosecond pulsed power. In: 2019 IEEE Pulsed Power and Plasma Science (PPPS). IEEE (2019)

  22. 22.

    Ohta, K., Wada, N., Kuzumoto, M.: Characteristics of ozone generation by both electrodes cooling ozone generator. IEEJ Trans. Fundam. Mater. 120(6), 695–700 (2000)

    Google Scholar 

  23. 23.

    Jodpimai, S., Boonduang, S., Limsuwan, P.: Dielectric barrier discharge ozone generator using aluminum granules electrodes. J. Electrostat. 74, 108–114 (2015)

    Google Scholar 

  24. 24.

    Park, S.-L., et al.: Effective ozone generation utilizing a meshed-plate electrode in a dielectric-barrier discharge type ozone generator. J. Electrostat. 64(5), 275–282 (2006)

    Google Scholar 

  25. 25.

    Chen, J., Davidson, J.H.: Ozone production in the negative DC corona: the dependence of discharge polarity. Plasma Chem. Plasma Process. 23(3), 501–518 (2003)

    Google Scholar 

  26. 26.

    Šimek, M., Pekárek, S., Prukner, V.: Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem. Plasma Process. 32(4), 743–754 (2012)

    Google Scholar 

  27. 27.

    Šimek, M., Pekárek, S., Prukner, V.: Influence of power modulation on ozone production using an AC surface dielectric barrier discharge in oxygen. Plasma Chem. Plasma Process. 30(5), 607–617 (2010)

    Google Scholar 

  28. 28.

    Hong, D., et al.: Measurement of ozone production in non-thermal plasma actuator using surface dielectric barrier discharge. Plasma Chem. Plasma Process. 34(4), 887–897 (2014)

    Google Scholar 

  29. 29.

    Fukuoka, H., et al.: Improvement of ozone generation characteristics with shorter rise time of nanosecond pulse voltage. In: 2019 IEEE Pulsed Power and Plasma Science (PPPS). IEEE (2019)

  30. 30.

    Matsukawa, R., et al.: Development of a compact nanosecond pulse generator. In: 2019 IEEE Pulsed Power and Plasma Science (PPPS). IEEE (2019)

  31. 31.

    Ryu, T., Wang, D., Namihira, T.: Behavioral characteristics of nanosecond pulsed discharge in coaxial electrodes. Electr. Eng. Jpn. 210, 19–28 (2020)

    Google Scholar 

  32. 32.

    Wang, D., Namihira, T.: Nanosecond pulsed streamer discharges: II. Physics, discharge characterization and plasma processing. Plasma Sources Sci. Technol. 29(2), 023001 (2020)

    ADS  Google Scholar 

  33. 33.

    Yamaguchi, H., et al.: Observation of positive and negative nanosecond pulsed streamers in a coaxial electrode using a quadruple emICCD camera system. In: 2019 IEEE Pulsed Power and Plasma Science (PPPS). IEEE (2019)

  34. 34.

    Kong, C., et al.: Stabilization of a turbulent premixed flame by a plasma filament. Combust. Flame 208, 79–85 (2019)

    Google Scholar 

  35. 35.

    Wang, Q., et al.: Characteristics and mechanisms of transition from filament to homogeneous glow in atmospheric helium dielectric barrier discharges under variation of the applied voltage amplitude. J. Phys. D Appl. Phys. 52(20), 205201 (2019)

    ADS  Google Scholar 

  36. 36.

    Ding, C., et al.: Streamer-to-filamentary transition and electron temperature measurement in positive polarity nanosecond surface discharge between 1 and 10 bar. In: AIAA Scitech 2019 Forum (2019)

  37. 37.

    Elias, P., Castera, P.: Measurement of the impulse produced by a pulsed surface discharge actuator in air. J. Phys. D Appl. Phys. 46(36), 365204 (2013)

    Google Scholar 

  38. 38.

    Eid, A., Takashima, K., Mizuno, A.: Experimental and simulation investigations of DBD plasma reactor at normal environmental conditions. IEEE Trans. Ind. Appl. 50(6), 4221–4227 (2014)

    Google Scholar 

  39. 39.

    Sato, S., et al.: Successively accelerated ionic wind with integrated dielectric-barrier-discharge plasma actuator for low-voltage operation. Sci. Rep. 9(1), 1–11 (2019)

    ADS  Google Scholar 

  40. 40.

    Truong, H.T., et al.: Effects of dielectric properties on electrical characteristics of dielectric barrier discharge generated by low frequency uni-polar high voltage pulses. Jpn. J. Appl. Phys. 58(11), 111001 (2019)

    ADS  Google Scholar 

  41. 41.

    Yadala, S., et al.: Effect of DBD plasma actuators on vortical structures in a turbulent mixing layer. In: 11th International Symposium on Turbulence and Shear Flow Phenomena, TSFP (2019)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Ghomi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seyfi, P., Golghand, M.R., Ghasemi, S. et al. The effect of mixed electric field on characteristic of ozone generation in a DBD plasma source. J Theor Appl Phys 14, 195–202 (2020). https://doi.org/10.1007/s40094-020-00385-2

Download citation

Keywords

  • Ozone generation
  • DBD
  • Mixed electric field
  • Power supply
  • Electrical discharge
  • Reactor temperature