Temperature dependence of EXAFS spectra of BCC crystals analyzed based on classical anharmonic correlated Einstein model


In this work, the temperature dependence of extended X-ray absorption fine structure (EXAFS) of the body-centered cubic crystals was investigated based on the anharmonic correlated Einstein model using the classical statistical theory. The oscillation of the anharmonic EXAFS spectra presented in terms of the cumulant expansion up to the fourth order. Here, the thermodynamic parameters of a system are derived from an anharmonic effective potential that has taken into account the influence of all nearest neighbors of absorbing and backscattering atoms. Analytical expressions of the first four EXAFS cumulants are obtained in simple forms of temperature or parallel mean-square relative displacement. The numerical results for crystalline molybdenum in the temperature range from 0 to 900 K are found to be in good agreement with those obtained using the other theoretical methods and experiments at various temperatures. The analytical results for the contributions of the cumulants to the amplitude reduction and phase shift of the EXAFS oscillation discover the role and meaning of high-order cumulants in analyzing the temperature dependence of the EXAFS spectra.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Lytle, F.W., Sayers, D.E., Stern, E.A.: Extended X-ray-absorption fine-structure technique. II. Experimental practice and selected results. Phys. Rev. B 11, 4825–4835 (1975)

    ADS  Google Scholar 

  2. 2.

    Beni, G., Platzman, P.M.: Temperature and polarization dependence of extended X-ray absorption fine-structure spectra. Phys. Rev. B 14, 1514–1518 (1976)

    ADS  Google Scholar 

  3. 3.

    Eisenberger, P., Brown, G.S.: The study of disordered systems by EXAFS: limitations. Solid State Commun. 29, 481–484 (1979)

    ADS  Google Scholar 

  4. 4.

    Greegor, R.B., Lytle, F.W.: Extended X-ray absorption fine structure determination of thermal disorder in Cu: comparison of theory and experiment. Phys. Rev. B 20, 4902–4907 (1979)

    ADS  Google Scholar 

  5. 5.

    Stern, E.A., Bunker, B.A., Heald, S.M.: Many-body effects on extended X-ray absorption fine structure amplitudes. Phys. Rev. B 21, 5521–5539 (1980)

    ADS  Google Scholar 

  6. 6.

    Lee, P.A., Citrin, P.H., Eisenberger, P., Kincaid, B.M.: Extended X-ray absorption fine structures-its strengths and limitations as a structural tool. Rev. Mod. Phys. 53, 769–806 (1981)

    ADS  Google Scholar 

  7. 7.

    Bunker, G.: Applications of the ratio method of EXAFS analysis to disordered systems. Nucl. Instrum. Methods 207, 437–444 (1983)

    Google Scholar 

  8. 8.

    Tröger, L., Yokoyama, T., Arvanitis, D., Lederer, T., Tischer, M., Baberschke, K.: Determination of bond lengths, atomic mean-square relative displacements, and local thermal expansion by means of soft-X-ray photoabsorption. Phys. Rev. B 49, 888–903 (1994)

    ADS  Google Scholar 

  9. 9.

    Dalba, G., Fornasini, P., Grazioli, M.: Local disorder in crystalline and amorphous germanium. Phys. Rev. B 76, 11034–11043 (1995)

    ADS  Google Scholar 

  10. 10.

    Kubo, R.: Generalized cumulant expansion method. J. Phys. Soc. Jpn. 17, 1100–1120 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  11. 11.

    Rehr, J.J., Albers, R.C.: Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000)

    ADS  Google Scholar 

  12. 12.

    Hung, N.V., Rehr, J.J.: Anharmonic correlated Einstein-model Debye–Waller factors. Phys. Rev. B 56, 43–46 (1997)

    ADS  Google Scholar 

  13. 13.

    Tranquada, J.M., Ingalls, R.: Extended X-ray-absorption fine-structure study of anharmonicity in CuBr. Phys. Rev. B 28, 3520–3528 (1983)

    ADS  Google Scholar 

  14. 14.

    Crozier, E.D., Rehr, J.J., Ingalls, R.: Amorphous and liquid systems. In: Koningsberger, D.C., Prins, R. (eds.) X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Wiley, New York (1988)

    Google Scholar 

  15. 15.

    Yokoyama, T., Ohta, T., Sato, H.: Thermal expansion and anharmonicity of solid Kr studied by extended X-ray-absorption fine structure. Phys. Rev. B 55, 11320–11329 (1997)

    ADS  Google Scholar 

  16. 16.

    Tien, T.S.: Advances in studies of the temperature dependence of the EXAFS amplitude and phase of FCC crystals. J. Phys. D Appl. Phys. 53, 315303 (2020)

    Google Scholar 

  17. 17.

    Frenkel, A.I., Rehr, J.J.: Thermal expansion and x-ray-absorption fine-structure cumulants. Phys. Rev. B 48, 585–588 (1993)

    ADS  Google Scholar 

  18. 18.

    Vaccari, M., Grisenti, R., Fornasini, P., Rocca, F., Sanson, A.: Negative thermal expansion in CuCl: an extended X-ray absorption fine structure study. Phys. Rev. B 75, 184307 (2007)

    ADS  Google Scholar 

  19. 19.

    Ahmed, S.I., Dalba, G., Fornasini, P., Vaccari, M., Rocca, F., Sanson, A., Li, J., Sleight, A.W.: Negative thermal expansion in crystals with the delafossite structure: an extended x-ray absorption fine structure study of CuScO2 and CuLaO2. Phys. Rev. B 79, 104302 (2009)

    ADS  Google Scholar 

  20. 20.

    Dalba, G., Fornasini, P.: EXAFS Debye-Waller Factor and Thermal Vibrations of Crystals. J. Synchrotron Radiat. 4, 243–255 (1997)

    Google Scholar 

  21. 21.

    Dalba, G., Fornasini, P., Grisenti, R., Pasqualini, D., Diop, D., Monti, F.: Anharmonicity effects on the extended x-ray-absorption fine structure: the case of cadmium selenide. Phys. Rev. B 58, 4793–4802 (1998)

    ADS  Google Scholar 

  22. 22.

    Sevillano, E., Meuth, H., Rehr, J.J.: Extended X-ray absorption fine structure Debye–Wailer factors. I. Monatomic crystals. Phys. Rev. B 20, 4908–4911 (1979)

    ADS  Google Scholar 

  23. 23.

    Fujikawa, T., Miyanaga, T.: Quantum statistical approach to Debye–Waller factors in EXAFS, EELS, and ARXPS. I. Anharmonic contribution in plane-wave approximation. J. Phys. Soc. Jpn. 62, 4108–4122 (1993)

    ADS  Google Scholar 

  24. 24.

    Miyanaga, T., Fujikawa, T.: Quantum statistical approach to Debye–Waller factor in EXAFS, EELS, and ARXPS. III. Applicability of Debye and Einstein approximation. J. Phys. Soc. Jpn. 63, 3683–3690 (1994)

    ADS  Google Scholar 

  25. 25.

    Miyanaga, T., Fujikawa, T.: Quantum statistical approach to Debye–Waller factor in EXAFS, EELS and ARXPS. II. Application to one-dimensional models. J. Phys. Soc. Jpn. 63, 1036–1052 (1994)

    ADS  Google Scholar 

  26. 26.

    Yokoyama, T.: Path-integral effective-potential method applied to extended X-ray-absorption fine-structure cumulants. Phys. Rev. B 57, 3423 (1998)

    ADS  Google Scholar 

  27. 27.

    Yokoyama, T.: Path-integral effective-potential theory for EXAFS cumulants compared with the second-order perturbation. J. Synchrotron Radiat. 6, 323–325 (1999)

    Google Scholar 

  28. 28.

    Poiarkova, A.V., Rehr, J.J.: Multiple-scattering X-ray-absorption fine-structure Debye–Waller factor calculations. Phys. Rev. B 59, 948–957 (1999)

    ADS  Google Scholar 

  29. 29.

    Beccara, S.A., Dalba, G., Fornasini, P., Grisenti, R., Pederiva, F., Sanson, A., Diop, D., Rocca, F.: Local thermal expansion in copper: extended X-ray-absorption fine-structure measurements and path-integral Monte Carlo calculations. Phys. Rev. B 68, 140301 (2003)

    ADS  Google Scholar 

  30. 30.

    Beccara, S.A., Fornasini, P.: Path-integral Monte Carlo calculation of the effects of thermal disorder in extended X-ray-absorption fine structure of copper. Phys. Rev. B 77, 172304 (2008)

    ADS  Google Scholar 

  31. 31.

    Vila, F.D., Rehr, J.J., Rossner, H.H., Krappe, H.J.: Theoretical X-ray absorption Debye–Waller factors. Phys. Rev. B 76, 014301 (2007)

    ADS  Google Scholar 

  32. 32.

    Vila, F.D., Lindahl, V.E., Rehr, J.J.: X-ray absorption Debye–Waller factors from ab initio molecular dynamics. Phys. Rev. B 85, 024303 (2012)

    ADS  Google Scholar 

  33. 33.

    Hung, N.V., Trung, N.B., Kirchner, B.: Anharmonic correlated Debye model Debye–Waller factors. Phys. B 405, 2519–2525 (2010)

    ADS  Google Scholar 

  34. 34.

    Stern, E.A., Livins, P., Zhang, Z.: Thermal vibration and melting from a local perspective. Phys. Rev. B 43, 8850–8860 (1991)

    ADS  Google Scholar 

  35. 35.

    Pirog, I.V., Nedoseikina, T.I., Zarubin, I.A., Shuvaev, A.T.: Anharmonic pair potential study in face-centered-cubic structure metals. J. Phys.: Condens. Matter 14, 1825–1832 (2002)

    ADS  Google Scholar 

  36. 36.

    Pirog, I.V., Nedoseikina, T.I.: Study of effective pair potentials in cubic metals. Phys. B 334, 123–129 (2003)

    ADS  Google Scholar 

  37. 37.

    Vlasenko, V.G., Podsukhina, S.S., Kozinkin, A.V., Zubavichus, YaV: Determination of the melting temperature of palladium nanoparticles by X-ray absorption spectroscopy. Phys. Solid State 58, 421–426 (2016)

    ADS  Google Scholar 

  38. 38.

    Hung, N.V., Tien, T.S., Duc, N.B., Vuong, D.Q.: High-order expanded XAFS Debye–Waller factors of HCP crystals based on classical anharmonic correlated Einstein model. Mod. Phys. Lett. B 28, 1450174 (2014)

    ADS  Google Scholar 

  39. 39.

    Tien, T.S., Hung, N.V., Tuan, N.T., Nam, N.V., An, N.Q., Thuy, N.T.M., Lien, V.T.K., Nghia, N.V.: High-order EXAFS cumulants of diamond crystals based on a classical anharmonic correlated Einstein model. J. Phys. Chem. Solids 134, 307–312 (2019)

    ADS  Google Scholar 

  40. 40.

    Rehr, J.J., Zabinsky, S.I., Ankudinov, A., Albers, R.C.: Atomic-XAFS, and XANES. Phys. B 208–209, 23–26 (1995)

    ADS  Google Scholar 

  41. 41.

    Mahan, G.D.: Many-Particle Physics, 2nd edn. Plenum, New York (1990)

    Google Scholar 

  42. 42.

    Hung, N.V., Hue, T.T., Khoa, H.D., Vuong, D.Q.: Anharmonic correlated Debye model high-order expanded interatomic effective potential and Debye–Waller factors of bcc crystals. Phys. B 503, 174–178 (2016)

    ADS  Google Scholar 

  43. 43.

    Duc, N.B., Tho, V.Q., Hung, N.V., Khoa, D.Q., Hieu, H.K.: Anharmonic effects of gold in extended X-ray absorption fine structure. Vacuum 145, 272–277 (2017)

    ADS  Google Scholar 

  44. 44.

    Duc, N.B., Tho, V.Q., Tien, T.S., Khoa, D.Q., Hieu, H.K.: Pressure and temperature dependence of EXAFS Debye–Waller factor of platinum. Radiat. Phys. Chem. 149, 61–64 (2018)

    ADS  Google Scholar 

  45. 45.

    Duc, N.B., Hung, N.V., Khoa, H.D., Vuong, D.Q., Tien, T.S.: Thermodynamic properties and anharmonic effects in XAFS based on anharmonic correlated debye model Debye–Waller factors. Adv. Mater. Sci. Eng. 2018, 3263170 (2018)

    Google Scholar 

  46. 46.

    Hung, N.V., Thang, C.S., Duc, N.B., Vuong, D.Q., Tien, T.S.: Temperature dependence of theoretical and experimental Debye–Waller factors, thermal expansion and XAFS of metallic zinc. Phys. B 521, 198–203 (2017)

    Google Scholar 

  47. 47.

    Hung, N.V., Thang, C.S., Duc, N.B., Vuong, D.Q., Tien, T.S.: Advances in theoretical and experimental XAFS studies of thermodynamic properties, anharmonic effects and structural determination of fcc crystals. Eur. Phys. J. B 90, 256 (2017)

    ADS  MathSciNet  Google Scholar 

  48. 48.

    Hung, N.V., Duc, N.B., Vuong, D.Q., Toan, N.C., Tien, T.S.: Advances in EXAFS studies of thermodynamic properties and anharmonic effects based on Debye–Waller factors. Applications to semiconductors. Vacuum 169, 108872 (2019)

    ADS  Google Scholar 

  49. 49.

    Fornasini, P., Grisenti, R., Dapiaggi, M., Agostini, G., Miyanaga, T.: Nearest-neighbour distribution of distances in crystals from extended X-ray absorption fine structure. J. Chem. Phys. 147, 044503 (2017)

    ADS  Google Scholar 

  50. 50.

    Duc, N.B., Tho, N.Q.: Dependence of cumulants and thermodynamic parameters on temperature and doping ratio in extended X-ray absorption fine structure spectra of cubic crystals. Phys. B 552, 1–5 (2019)

    ADS  Google Scholar 

  51. 51.

    Vuong, D.Q., Hung, N.V.: Impurity effects in Debye–Waller factors of bcc crystals based on anharmonic correlated Einstein model. J. Mod. Phys. Lett. B 33, 1950078 (2019)

    ADS  MathSciNet  Google Scholar 

  52. 52.

    Freund, J., Ingalls, R., Crozier, E.D.: Extended X-ray-absorption fine-structure study of copper under high pressure. Phys. Rev. 39, 12537–12547 (1989)

    Google Scholar 

  53. 53.

    Yokoyama, T., Kobayashi, K., Ohta, T., Ugawa, A.: Anharmonic interatomic potentials of diatomic and linear triatomic molecules studied by extended X-ray-absorption fine structure. Phys. Rev. B 53, 6111–6122 (1996)

    ADS  Google Scholar 

  54. 54.

    Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    ADS  MATH  Google Scholar 

  55. 55.

    Girifalco, L.A., Weizer, V.G.: Application of the Morse potential function to cubic metals. Phys. Rev. 114, 687–690 (1959)

    ADS  Google Scholar 

  56. 56.

    Comaschi, T., Balerna, A., Mobilio, S.: Thermal dependent anharmonicity effects on gold bulk studied by extended X-ray-absorption fine structure. J. Phys. Condens. Matter 21, 325404 (2009)

    Google Scholar 

  57. 57.

    Grimvall, G.: Thermophysical Properties of Materials, 1st edn. North-Holland, Amsterdam (1999). Kindle Edition

    Google Scholar 

  58. 58.

    Grosso, G., Parravicini, G.P.: Solid State Physics, 1st edn. Academic Press, London (2000)

    Google Scholar 

  59. 59.

    Kittel, C.: Introduction to Solid State Physics, 6th edn. Wiley, New York (1986)

    Google Scholar 

  60. 60.

    Ashcroft, N.L., Mermin, N.D.: Solid State Physics. Holt. Rinehart & Winston, New York (1976)

    Google Scholar 

Download references


This work was supported by the Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.

Author information



Corresponding author

Correspondence to Tong Sy Tien.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tien, T.S. Temperature dependence of EXAFS spectra of BCC crystals analyzed based on classical anharmonic correlated Einstein model. J Theor Appl Phys 14, 295–305 (2020). https://doi.org/10.1007/s40094-020-00383-4

Download citation


  • EXAFS spectra
  • BCC crystals
  • Anharmonic correlated Einstein model
  • Classical statistical theory