About dark matter as an emerging entity from elementary energy density fluctuations of a three-dimensional quantum vacuum


A new suggestive explanation of dark matter as an emerging phenomenon determined by the polarization of a three-dimensional quantum vacuum, i.e., by opportune quantum vacuum energy density fluctuations, associated with processes of manifestation/demanifestation of virtual pairs of particles-antiparticles, in a background characterized by a fluctuating viscosity, is proposed. It is shown that the observed flattening of the orbital speeds of the arms of spiral galaxies is generated by an appropriate perturbative fluctuation of energy density of the three-dimensional quantum vacuum, which corresponds to a degree of viscosity, on the ultra-low frequencies. In this approach, a unifying re-reading of ordinary matter, dark matter, and dark energy as phenomena deriving from the energy density fluctuations of the same three-dimensional quantum vacuum is obtained.

This is a preview of subscription content, log in to check access.


  1. 1.

    Fiscaletti, D., Sorli, A.: Perspectives about quantum mechanics in a model of a three-dimensional quantum vacuum where time is a mathematical dimension. SOP Transactions on Theoretical Physics 1(3), 11–38 (2014)

    Article  Google Scholar 

  2. 2.

    D. Fiscaletti and A. Sorli, “Space-time curvature of general relativity and energy density of a three-dimensional quantum vacuum”, Annales UMCS Sectio AAA: PhysicaLXIX, 55–81 (2014).

  3. 3.

    D. Fiscaletti, The timeless approach. Frontier perspectives in 21st century physics, 1st ed. (World Scientific, Singapore, 2015).

  4. 4.

    Fiscaletti, D.: About dark energy and dark matter in a three-dimensional quantum vacuum model. Found. Phys. 46(10), 1307–1340 (2016)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Fiscaletti, D., Sorli, A.: About a three-dimensional quantum vacuum as the ultimate origin of gravity, electromagnetic field, dark energy … and quantum behaviour. Ukrainian Journal of Physics 61(5), 413–431 (2016)

    ADS  Article  Google Scholar 

  6. 6.

    D. Fiscaletti and A. Sorli, “Dynamic quantum vacuum and relativity”, Annales UMCS Sectio AAA: Physica, Vol. LXXI, pp. 11–52 (2016).

  7. 7.

    Fiscaletti, D.: What is the actual behaviour of the electron? From Bohm’s approach to the transactional interpretation… to a three-dimensional timeless non-local quantum vacuum. Electronic Journal of Theoretical Physics 13(35), 1–26 (2016)

    Google Scholar 

  8. 8.

    Fiscaletti, D., Sorli, A.: About electroweak symmetry breaking, electroweak vacuum and dark matter in a new suggested proposal of completion of the Standard Model in terms of energy fluctuations of a timeless three-dimensional quantum vacuum. Quantum Physics Letters 5(3), 55–69 (2016)

    ADS  Article  Google Scholar 

  9. 9.

    Fiscaletti, D., Sorli, A.: Quantum vacuum energy density and unifying perspectives between gravity and quantum behaviour of matter. Annales de la Fondation Louis de Broglie 42(2), 251–297 (2017)

    MathSciNet  Google Scholar 

  10. 10.

    Fiscaletti, D., Sorli, A.: Quantum relativity: variable energy density of quantum vacuum as the origin of mass, gravity and the quantum behaviour. Ukrainian Journal of Physics 63(7), 623–644 (2018)

    Article  Google Scholar 

  11. 11.

    E. Santos, “Quantum vacuum fluctuations and dark energy”, arXiv:0812.4121v2 [gr-qc] (2009).

  12. 12.

    Santos, E.: Space-time curvature induced by quantum vacuum fluctuations as an alternative to dark energy. Int. J. Theor. Phys. 50(7), 2125–2133 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    E. Santos, “Dark energy as a curvature of space-time induced by quantum vacuum fluctuations”, arXiv:1006.5543 (2010).

  14. 14.

    Cree, S.S., Davis, T.M., Ralph, T.C., Wang, Q., Zhu, Z., Unruh, W.G.: Can the fluctuations of the quantum vacuum solve the cosmological constant problem. Physical Review D 98, 063506 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    V. Sbitnev, “Navier-Stokes equation describes the movement of a special superfluid medium”, arXiv:1504.07497v1 [quant-ph] (2015).

  16. 16.

    V. Sbitnev, in Selected Topics in Applications of Quantum Mechanics (Physical vacuum is a special superfluid medium), eds. M.R. Pahlavani (InTech, Rijeka, 2015), pp. 345–373.

  17. 17.

    V. Sbitnev, “Hydrodynamics of the physical vacuum: dark matter is an illusion”, Modern Physics Letters A30, 35, 1550184 (2015).

  18. 18.

    V. Sbitnev, “Hydrodynamics of the physical vacuum. I: Scalar quantum sector”, Foundations of Physics46, 5, 606–619 (2016); e-print arXiv:1504.07497.v2 [quant-ph] (2016).

  19. 19.

    M. Fedi, “Hydrodynamics of the dark superfluid: I. Genesis of fundamental particles”, HAL-archives, CCSD, France, https://hal.archives-ouvertes.fr/hal-01549082 (2017).

  20. 20.

    M. Fedi, “Hydrodynamics of the dark superfluid: II. photon-phonon analogy”, HAL-archives, CCSD, France https://hal.archivesouvertes.fr/hal-01532718 (2017).

  21. 21.

    M. Fedi, “A Superfluid Theory of Everything?”, 2016, HALarchives, CCSD, France, https://hal.archives-ouvertes.fr/hal01312579 (2017).

  22. 22.

    L. Chiatti, in Space-time geometry and quantum events (The transaction as a quantum concept), ed. I. Licata (Nova Science Publishers, New York, 2014), pp. 11–44; e-print arXiv.org/pdf/1204.6636 (2012).

  23. 23.

    I. Licata, “Transaction and non-locality in quantum field theory”, European Physical Journal Web of Conferences (2013).

  24. 24.

    I. Licata and L. Chiatti, “The archaic universe: big bang,

  25. 25.

    cosmological term and the quantum origin of time in projective cosmology”, International Journal of Theoretical Physics48, 4, 1003–1018 (2009).

  26. 26.

    I. Licata and L. Chiatti, “Archaic universe and cosmological model:

  27. 27.

    'big-bang' as nucleation by vacuum”, International Journal of Theoretical Physics49, 10, 2379–2402 (2010); e-print arXiv:genph/1004.1544.

  28. 28.

    Licata, I., Chiatti, L.: Timeless approach to quantum jumps. Quanta 4, 10–26 (2015)

    Article  Google Scholar 

  29. 29.

    Chiatti, L., Licata, I.: Particle model from quantum foundations. Mathematics and Foundations, Quantum Studies (2016)

    Google Scholar 

  30. 30.

    Caldirola, P.: The introduction of the chronon in the electron theory and a charged-lepton mass formula. Lettere al Nuovo Cimento 27(8), 225–228 (1980). https://doi.org/10.1007/bf02750348

    MathSciNet  Article  Google Scholar 

  31. 31.

    E. Recami, M.Z.Rached, and I.Licata, “in Beyond Peaceful Coexistence. The Emergence of Space, Time and Quantum (On a Time-Space Operator (and other Non-. Selfadjoint Operators) for Observables in QM and QFT), ed. I. Licata (Imperial College Press, London, 2016), pp. 371–417.

  32. 32.

    Glashow, S.L.: Partial-symmetries of weak interactions. Nuclear Physics 22(4), 579–588 (1961)

    ADS  Article  Google Scholar 

  33. 33.

    Weinberg, S.: A model of leptons. Phys. Rev. Lett. 19(21), 1264–1266 (1967)

    ADS  Article  Google Scholar 

  34. 34.

    Salam, A.: Weak and electromagnetic interactions. Conference Proceedings C 680519, 367–377 (1968)

    Google Scholar 

  35. 35.

    G. ’t Hooft, “Renormalization of massless Yang-Mills fields”, Nuclear Physics B33, 1, 173–199 (1971).

  36. 36.

    E. Gabrielli, M. Heikinheimo, K. Kannike, A. Racioppi, M. Raidal and C. Spethmann, “Towards completing the Standard Model: vacuum stability, EWSB and dark matter”, arXiv:1309.6632.pdf [hep-th] (2013).

  37. 37.

    Galbiati, C.: Le entità oscure, 1st edn. Feltrinelli, Milano (2018)

    Google Scholar 

  38. 38.

    Babcock, H.W.: Rotation of the Andromeda Nebula. Lick Observatory Bulletin 19, 41–51 (1939)

    ADS  Article  Google Scholar 

  39. 39.

    Rubin, V.C., Ford Jr., W.K.: Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J. 159, 379–403 (1970)

    ADS  Article  Google Scholar 

  40. 40.

    Roberts, M.S., Whitehurst, R.N.: The Rotation Curve and Geometry of M31 at Large Galactocentric Distances. Astrophys. J. 201, 327–346 (1975)

    ADS  Article  Google Scholar 

  41. 41.

    Rubin, V.C., Thonnard, N., Ford Jr., W.K.: Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R= 122 kpc/. Astrophys. J. 238, 471–487 (1980)

    ADS  Article  Google Scholar 

  42. 42.

    de Blok, W.J.G., McGaugh, S.S., Rubin, V.C.: High-resolution rotation curves of low surface brightness galaxies. II. Mass models. The Astronomical Journal 122, 2396–2427 (2001)

    ADS  Article  Google Scholar 

  43. 43.

    V. Sbitnev, “Dark matter is a manifestation of the vacuum Bose-Einstein condensate”, arXiv:1601:04536v2 [physics.gen-ph] (2016).

  44. 44.

    G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo and F.S. Queiroz, “The waning of the WIMP? A review of models, searches, and constraints”, arXiv:1703.07364v1 [hep-th] (2017).

  45. 45.

    L Roszkowski, E.M. Sessolo and S. Trojanowski, “WIMP dark matter candidates and searches - current status and future prospects”, arXiv:1707.06277v2 [hep-th] (2018).

  46. 46.

    F. Queiroz, “Wimp theory review”, arXiv:1711.02463v1 [hep-ph] (2017).

  47. 47.

    P. Frampton, “Theory of dark matter”, arXiv:1705. 04373v1 [hep-ph] (2017).

  48. 48.

    Peebles, P.J.E., Schramm, D.N., Turner, E.L., Kron, R.G.: The Case for the hot big bang cosmology. Nature 352, 769–776 (1991)

    ADS  Article  Google Scholar 

  49. 49.

    Gondolo, P., Gelmini, G.: Cosmic abundances of stable particles: Improved analysis. Nucl. Phys. B 360, 145–179 (1991)

    ADS  Article  Google Scholar 

  50. 50.

    Scott, P., Fairbairn, M., Edsjö, J.: Mon. Not. Royal Astron. Soc. 394, 82–104 (2009)

    ADS  Article  Google Scholar 

  51. 51.

    S.H. Wulandari, B. Dermawan, M.I. Arifyanto and I. Ibrahim,” Effects of dark matter on interior and evolution of main sequence stars”, AIP Conference Proceedings1589, 33 (2014).

  52. 52.

    Borsanyi, S., et al.: Calculation of the axion mass based on high-temperature lattice quantum chromodynamics. Nature 539, 69–71 (2016)

    ADS  Article  Google Scholar 

  53. 53.

    S. Borsanyi et al., “Lattice QCD for cosmology DESY16–05”, arXiv:1606.07494v2 [hep-lat] (2016).

  54. 54.

    Kolb, E.W., Turner, M.S.: The Early Universe. Addison-Wesley, New York (1990)

    Google Scholar 

  55. 55.

    Giannotti, M., Irastorza, I., Redondo, J., Ringwald, A.: Cool WISPs for stellar cooling excesses. JCAP 05, 057 (2016)

    ADS  Article  Google Scholar 

  56. 56.

    Brito, R., Cardoso, V., Okawa, H.: Accretion of dark matter by stars. Phys. Rev. Lett. 115, 111301 (2015)

    ADS  Article  Google Scholar 

  57. 57.

    Brito, R., Cardoso, V., Macedo, F.B., Okawa, H., Palenzuela, C.: Interaction between bosonic dark matter and stars. Phys. Rev. D 93, 044045 (2016)

    ADS  Article  Google Scholar 

  58. 58.

    Tamburini, F., Licata, I.: Can the periodic spectral modulations observed in 236 Sloan Sky Survey stars be due to dark matter effects? Phys. Scr. 92, 095001 (2017)

    ADS  Article  Google Scholar 

  59. 59.

    Borra, E.F., Trottier, E.: Discovery of peculiar periodic spectral modulations in a small fraction of solar type stars. Publication of the Astronomical Society of the Pacific 128, 969 (2016)

    Article  Google Scholar 

  60. 60.

    E. Santos, “Dark matter as an effect of the quantum vacuum”, arXiv:1711.01926v2 [physics-gen-ph] (2018).

  61. 61.

    Hajdukovic, D.S.: Is dark matter an illusion created by the gravitational polarization of the quantum vacuum? Astrophys. Space Sci. 334, 215–218 (2011). https://doi.org/10.1007/s10509-011-0744-4

    ADS  MATH  Article  Google Scholar 

  62. 62.

    Consoli, M.: Do potentials require massless particles? Physical Review Letters B 672(3), 270–274 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  63. 63.

    M. Consoli, “On the low-energy spectrum of spontaneously broken phi4 theories”, Modern Physics Letters A26, 531–542 (2011); e-print arXiv0904.1272 [gr-qc].

  64. 64.

    M. Consoli, in Vision of oneness (The vacuum condensates: a bridge between particle physics to gravity?), eds. I. Licata and A. Sakaji (Aracne Editrice, Rome, 2011).

  65. 65.

    Consoli, M., Matheson, C., Pluchino, A.: “The classical ether-drift experiments: a modern re-interpretation. European Physical Journal Plus 128, 71 (2013)

    ADS  Article  Google Scholar 

  66. 66.

    J.A. Wheeler, in Complexity, Entropy, and the Physics of Information (Information, physics, quantum: The search for links), ed. W. Zurek (Addison-Wesley, Redwood City, California, 1990).

  67. 67.

    Wheeler, J.A., Ford, K.W.: Geons, black holes and quantum foam: a life in physics. W.W. Norton & Company, New York (2000)

    Google Scholar 

  68. 68.

    P. Halpern, The quantum labyrinth. How Rochard Feynman and John Wheeler revolutionized time and reality, 1st ed. (Perseus Books, New York, 2017).

Download references

Author information



Corresponding author

Correspondence to Davide Fiscaletti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiscaletti, D. About dark matter as an emerging entity from elementary energy density fluctuations of a three-dimensional quantum vacuum. J Theor Appl Phys 14, 203–222 (2020). https://doi.org/10.1007/s40094-020-00379-0

Download citation


  • Standard model
  • Timeless three-dimensional quantum vacuum
  • Quantum vacuum energy density
  • Ordinary matter
  • Dark energy
  • Dark matter