MgFe2O4/CNTs nanocomposite: synthesis, characterization, and photocatalytic activity


Magnesium ferrite is a visible light absorber, and when combined with multiwall carbon nanotubes (MWCNTs), it can lead to low electron–hole recombination rates, thus improving its photocatalytic activity. In this work, a novel MgFe2O4/CNTs nanocomposite catalyst has been synthesized via anchoring MgFe2O4 nanoparticles onto MWCNTs surface by a sol–gel and microwave-assisted route. The prepared catalyst was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning and transmission electron microscopy, energy-dispersive X-ray analysis and vibrating scanning magnetometry. MgFe2O4 nanoparticles showed a cubic inverse spinel ferrite structure, while MgFe2O4/CNTs nanohybrids showed combinations of both structures. Morphology studies including Brunauer–Emmett–Teller (BET) analysis confirmed a 40 m2 g−1 specific surface area with narrow mesoporous size distribution for the MgFe2O4/CNTs nanocomposite. The photocatalytic performance of the new catalyst was assessed by photodegradation of methylene blue (MB). The experimental results demonstrated that MgFe2O4/CNTs exhibited strong photocatalytic activity, catalysing the photooxidation of about 98% of MB in 25 min under sunlight.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Qian W, Wu Z, Jia Y, Hong Y, Xu X, You H, Zheng Y, Xia Y (2017) Thermo electrochemical coupling for room temperature thermocatalysis in pyroelectric ZnO nanorods. Electrochem Commun 81:124–127

    CAS  Google Scholar 

  2. 2.

    Ma J, Chen L, Wu Z, Chen J, Jia Y, Hu Y (2019) Pyroelectric Pb(Zr0.52Ti0.48)O3 polarized ceramic with strong pyro-driven catalysis for dye wastewater decomposition. Ceram Int 45:11934–11938

    CAS  Google Scholar 

  3. 3.

    Wang L, Haugen NO, Wu Z, Shu X, Jia Y, Ma J, Yu S, Li H, Chai Q (2019) Ferroelectric BaTiO3@ZnO heterostructure nanofibers with enhanced pyroelectrically driven-catalysis. Ceram Int 45:90–95

    CAS  Google Scholar 

  4. 4.

    Djilani C, Zaghdoudi R, Djazi F et al (2015) Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. J Taiwan Inst Chem E 53:112–121

    CAS  Google Scholar 

  5. 5.

    Ouaddari H, Karim A, Achiou B et al (2019) New low-cost ultrafiltration membrane made from purified natural clays for direct red 80 dye removal. J Environ Chem Eng 7:103268

    CAS  Google Scholar 

  6. 6.

    Lan S, Feng J, Xiong Y, Tian S, Liu S, Kong L (2017) Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination. Environ Sci Technol 51:6560–6569

    CAS  PubMed  Google Scholar 

  7. 7.

    Xu X, Xiao L, Jia Y, Hong Y, Ma J, Wu Z (2018) Strong visible light photocatalytic activity of magnetically recyclable sol–gel-synthesized ZnFe2O4 for rhodamine B degradation. J Electron Matter 47:536–541

    CAS  Google Scholar 

  8. 8.

    Raizada P, Sudhaik A, Singh P (2019) Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: a review. Mater Sci Energy Technol 2:509–525

    Google Scholar 

  9. 9.

    Ali IH, Alrafai HA (2016) Kinetic, isotherm and thermodynamic studies on biosorption of chromium(VI) by using activated carbon from leaves of Ficus nitida. Chem Cent J 10:36

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Jia J, Du X, Zhang Q, Liu E, Fan J (2019) Z-scheme MgFe2O4/Bi2MoO6 heterojunction photocatalyst with enhanced visible light photocatalytic activity for malachite green removal. Appl Surf Sci 492:527–539

    CAS  Google Scholar 

  11. 11.

    Byrne C, Subramanian G, Pillai SC (2018) Recent advances in photocatalysis for environmental applications. J Environ Chem Eng 6:3531–3555

    CAS  Google Scholar 

  12. 12.

    Shanthi M, Kuzhalosai V (2012) Photocatalytic degradation of an azo dye, acid red 27, in aqueous solution using nano ZnO. Indian J Chem 51A:428–434

    CAS  Google Scholar 

  13. 13.

    Xu X, Chen S, Wu Z, Jia Y, Xiao L, Liu Y (2018) Strong pyro-electro-chemical coupling of Ba0.7Sr0.3TiO3@Ag pyroelectric nanoparticles for room-temperature pyrocatalysis. Nano Energy 50:581–588

    CAS  Google Scholar 

  14. 14.

    He C, Shu D, Su MH et al (2010) Photocatalytic activity of metal (Pt, Ag, and Cu)-deposited TiO2 photoelectrodes for degradation of organic pollutants in aqueous solution. Desalination 253:88–93

    CAS  Google Scholar 

  15. 15.

    Ibrahim I, Athanasekou C, Manolis G et al (2019) Photocatalysis as an advanced reduction process (ARP): the reduction of 4-nitrophenol using titania nanotubes-ferrite nanocomposites. J Hazard Mater 372:37–44

    CAS  PubMed  Google Scholar 

  16. 16.

    Manohar A, Krishnamoorth C (2017) Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method. J Photochem Photobiol B Biol 173:456–465

    CAS  Google Scholar 

  17. 17.

    Sonu V, Dutta S, Sharma P et al (2019) Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. J Saudi Chem Soc.

    Article  Google Scholar 

  18. 18.

    Tzvetkov M, Milanova M, Cherkezova-Zheleva Z et al (2017) Mixed metal oxides of the type CoxZn1-xFe2O4 as photocatalysts for malachite green degradation under UV light irradiation. Acta Chim Slov 64:299–311

    CAS  PubMed  Google Scholar 

  19. 19.

    Arimi A, Megatif L, Granone LI et al (2018) Visible-light photocatalytic activity of zinc ferrites. J Photochem Photobiol A Chem 366:118–126

    CAS  Google Scholar 

  20. 20.

    Rashmi SK, Naik HSB, Jayadevappa H et al (2017) Solar light responsive Sm-Zn ferrite nanoparticle as efficient photocatalyst. Mater Sci Eng B 225:86–97

    CAS  Google Scholar 

  21. 21.

    Gore SK, Jadhav SS, Jadhav S et al (2017) The structural and magnetic properties of dual phase cobalt ferrite. Sci Rep 7:2524

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Babu KV, Sailaja B, Jalaiah K, Shibeshi PT, Ravi M (2018) Effect of zinc substitution on the structural, electrical and magnetic properties of nano-structured Ni0.5Co0.5Fe2O4 ferrites. Phys B Condens Matter 534:83–89

    CAS  Google Scholar 

  23. 23.

    Sharma S, Choudhary N, Verma MK et al (2017) Cation distribution and magnetic properties of nano and bulk CoCrFeO4 ferrite synthesized by glycine-nitrate combustion method. Ceram Int 43:11083–11089

    CAS  Google Scholar 

  24. 24.

    Reddy CVG, Manorama SV, Rao VJ (1999) Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens Actuators B 55:90–95

    Google Scholar 

  25. 25.

    Ahmed MA, Okasha N, El-Sayed MM (2007) Enhancement of the physical properties of rare-earth-substituted Mn–Zn ferrites prepared by flash method. Ceram Int 33:49–58

    CAS  Google Scholar 

  26. 26.

    Godbole RV, Rao P, Alegaonkar PS, Bhagwat S (2015) Influence of fuel to oxidizer ratio on LPG sensing performance of MgFe2O4 nanoparticles. Mater Chem Phys 161:1–7

    Google Scholar 

  27. 27.

    Feng Y, Li S, Zheng Y, Yi Z, He Y, Yebin Xu (2017) Preparation and characterization of MgFe2O4 nanocrystallites via PVA sol-gel route. J Alloys Compd 699:521–525

    CAS  Google Scholar 

  28. 28.

    Jinhui J, Kuili L, Weiqiang F et al (2016) Electrospinning synthesis and photocatalytic property of Fe2O3/MgFe2O4 heterostructure for photocatalytic degradation of tetracycline. Mater Lett 176:1–4

    Google Scholar 

  29. 29.

    Shahid M, Jingling L, Ali Z et al (2013) Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation. Mater Chem Phys 139:566–571

    CAS  Google Scholar 

  30. 30.

    Shakir I, Sarfraz M, Ali Z, Aboud MF, Agboola PO (2016) Magnetically separable and recyclable graphene-MgFe2O4 nanocomposites for enhanced photocatalytic applications. J Alloys Compd 660:450–455

    CAS  Google Scholar 

  31. 31.

    Skliri E, Miao J, Xie J et al (2018) Assembly and photochemical properties of mesoporous networks of spinel ferrite nanoparticles for environmental photocatalytic remediation. Appl Catal B Environ 227:330–339

    CAS  Google Scholar 

  32. 32.

    Hong Y, Ren A, Jiang Y, He J, Xiao L, Shi W (2015) Sol–gel synthesis of visible-light-driven Ni1–xCuxFe2O4 photocatalysts for degradation of tetracycline. Ceram Int 41:1477–1486

    CAS  Google Scholar 

  33. 33.

    Zhang L, He Y, Wu Y, Wua T (2011) Photocatalytic degradation of RhB over MgFe2O4/TiO2 composite materials. Mat Sci Eng B 176:1497–1504

    CAS  Google Scholar 

  34. 34.

    Kaur N, Kaur M (2018) Envisioning the composition effect on structural, magnetic, thermal and optical properties of mesoporous MgFe2O4-GO nanocomposites. Ceram Int 44:4158–4168

    CAS  Google Scholar 

  35. 35.

    Li X, Lu H, Zhang Y, He F (2017) Efficient removal of organic pollutants from aqueous media using newly synthesized polypyrrole/CNTs-CoFe2O4 magnetic nanocomposites. Chem Eng J 316:893–902

    CAS  Google Scholar 

  36. 36.

    Zhu HY, Jiang R, Huang SH et al (2015) Novel magnetic NiFe2O4/multi-walled carbon nanotubes hybrids: facile synthesis, characterization, and application to the treatment of dyeing wastewater. Ceram Int 41:11625–11631

    CAS  Google Scholar 

  37. 37.

    Cong Y, Li X, Qin Y et al (2011) Carbon-doped TiO2 coating on multiwalled carbon nanotubes with higher visible light photocatalytic activity. Appl Catal B 107:128–134

    CAS  Google Scholar 

  38. 38.

    Singh C, Bansal S, Singhal S (2014) Synthesis of Zn1−xCoxFe2O4/MWCNTs nanocomposites using reverse micelle method: investigation of their structural, magnetic, electrical, optical and photocatalytic properties. Phys B Condens Matter 444:70–76

    CAS  Google Scholar 

  39. 39.

    Shaheen HA, Marwani HM, Soliman EM (2015) Selective adsorption of gold ions from complex system using oxidized multi-walled carbon nanotubes. J Mol Liq 212:480–486

    CAS  Google Scholar 

  40. 40.

    Peddis D, Cannas C, Musinu A et al (2013) Beyond the effect of particle size: influence of CoFe2O4 nanoparticle arrangements on magnetic properties. Chem Mater 25:2005–2013

    CAS  Google Scholar 

  41. 41.

    Yadav RS, Kuřitka I, Vilcakova J et al (2017) Impact of grain size and structural changes on magnetic, dielectric, electrical, impedance and modulus spectroscopic characteristics of CoFe2O4 nanoparticles synthesized by honey mediated sol-gel combustion method. Adv Nat Sci Nanosci Nanotechnol 8:1–14

    Google Scholar 

  42. 42.

    Jianfeng WU, Meng LIU, Binzheng F, Fengyi Z, Na Z, Xiaohong XU (2009) Process control of zinc oxide nano crystalline prepared by a polyacylamide-gel method. J Chin Silic Soc 37:1782–1790

    Google Scholar 

  43. 43.

    Hu X, Liu B, Deng Y, Chen H, Luo S, Sun C, Yang S (2011) Adsorption and heterogeneous fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Appl Catal B Environ 107:274–283

    CAS  Google Scholar 

  44. 44.

    Heiba ZK, Sanad MMS, Mohamed MB (2019) Influence of Mg-deficiency on the functional properties of magnesium ferrite anode material. Solid State Ion 341:115042

    CAS  Google Scholar 

  45. 45.

    Abega AV, Ngomo HM, Nongwe I et al (2019) Easy and convenient synthesis of CNT/TiO2 nanohybrid by in-surface oxidation of Ti3+ ions and application in the photocatalytic degradation of organic contaminants in water. Synth Met 251:1–14

    CAS  Google Scholar 

  46. 46.

    Zhang X, Feng M, Wang L, Qu R, Wang Z (2017) Catalytic degradation of 2-phenylbenzimidazole-5-sulfonic acid by peroxymonosulfate activated with nitrogen and sulfur co-doped CNTs-COOH loaded CuFe2O4. Chem Eng J 307:95–104

    CAS  Google Scholar 

  47. 47.

    Jaafarzadeh N, Ghanbari F, Ahmadi M (2017) Efficient degradation of 2,4-dichlorophenoxyacetic acid by peroxymonosulfate/magnetic copper ferrite nanoparticles/ozone: a novel combination of advanced oxidation processes. Chem Eng J 320:436–447

    CAS  Google Scholar 

  48. 48.

    Shi D, Cheng JP, Liu F, Zhang XB (2010) Controlling the size and size distribution of magnetite nanoparticles on carbon nanotubes. J Alloys Compd 502:365–370

    CAS  Google Scholar 

  49. 49.

    Kafshgari LA, Ghorbani M, Azizi A (2017) Fabrication and investigation of MnFe2O4/MWCNTs nanocomposite by hydrothermal technique and adsorption of cationic and anionic dyes. Appl Surf Sci 419:70–83

    CAS  Google Scholar 

  50. 50.

    Ain N, Shaheen W, Bashir B, Abdelsalam NM, Warsi MF, Khan MA, Shahid M (2016) Electrical, magnetic and photoelectrochemical activity of rGO/MgFe2O4 nanocomposites under visible light irradiation. Ceram Int 42:12401–12408

    CAS  Google Scholar 

  51. 51.

    Cullity BD, Chad DG (2011) Introduction to magnetic materials. John Wiley & Sons, Hoboken

    Google Scholar 

  52. 52.

    Zhu Z, Wang C, Liang L, Yu D, Sun J, Zhang L, Zhong S, Liu B (2020) Synthesis of novel ternary photocatalyst Ag3PO4/Bi2WO6/multi-walled carbon nanotubes and its enhanced visible-light photoactivity for photodegradation of norfloxacin. J Nanosci Nanotechnol 20:2247–2258

    CAS  PubMed  Google Scholar 

  53. 53.

    Zhou X, Gao Q, Yang S, Fang Y (2020) Carbon nanotube@silicon carbide coaxial heterojunction nanotubes as metal-free photocatalysts for enhanced hydrogen evolution. Chin J Catal 41:62–71

    CAS  Google Scholar 

  54. 54.

    Wu F, Duan W, Li M, Xu H (2018) Synthesis of MgFe2O4/reduced graphene oxide composite and its visible-light photocatalytic performance for organic pollution. Int J Photoenergy 2018:1–5

    CAS  Google Scholar 

  55. 55.

    Sohail M, Xue H, Jiao Q et al (2018) Synthesis of well-dispersed TiO2/CNTs@CoFe2O4 nanocomposites and their photocatalytic properties. Mater Res Bull 101:83–89

    CAS  Google Scholar 

  56. 56.

    Yu J, Ma T, Liu S (2011) Enhanced photocatalytic activity of mesoporous TiO2 aggregates by embedding carbon nanotubes as electron-transfer channel. Phys Chem Chem Phys 13:3491–3501

    CAS  PubMed  Google Scholar 

  57. 57.

    Yang J, Xie T, Zhu Q, Wang J, Xu L, Liu C (2020) Boosting the photocatalytic activity of BiOX under solar light via selective crystal facet growth. J Mater Chem C 8:2579–2588

    CAS  Google Scholar 

  58. 58.

    Zhao D, Yang X, Chen C, Wang X (2013) Enhanced photocatalytic degradation of methylene blue on multiwalled carbon nanotubes-TiO2. J Colloid Interface Sci 398:234–239

    CAS  PubMed  Google Scholar 

  59. 59.

    Liu F, Dong S, Zhang Z, Li X, Dai X, Xin Y, Wang X, Liu K, Yuan Z, Zheng Z (2019) Synthesis of a well-dispersed CaFe2O4/g-C3N4/CNT composite towards the degradation of toxic water pollutants under visible light. RSC Adv 9:25750–25761

    CAS  Google Scholar 

  60. 60.

    Jiang L, Yuan X, Zeng G, Liang J, Chen X, Yu H, Wang H, Wu Z, Zhang J, Xiong T (2018) In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl Catal B Environ 227:376–385

    CAS  Google Scholar 

  61. 61.

    Wang J, Tang L, Zeng G, Liu Y, Zhou Y, Deng Y, Wang J, Peng B (2017) Plasmonic bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis. ACS Sustain Chem Eng 5:1062–1072

    CAS  Google Scholar 

  62. 62.

    Tachikawa T, Fujitsuka M, Majima T (2007) Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J Phys Chem C 111:5259–5275

    CAS  Google Scholar 

  63. 63.

    Askari MB, Banizi ZT, Soltani S, Seifi M (2018) Comparison of optical properties and photocatalytic behavior of TiO2/CdS/MWCNTs nanocomposites. Optik 157:230–239

    CAS  Google Scholar 

  64. 64.

    Lu M, Chang Y, Guan X-H, Wang G-S (2019) The synthesis of CoxNi1-xFe2O4/multi-walled carbon nanotube nanocomposites and their photocatalytic performance. RSC Adv 9:33806–33813

    CAS  Google Scholar 

  65. 65.

    Chiu Y-H, Chang T-FM, Chen C-Y, Sone M, Hsu Y-J (2019) Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9:1–32

    Google Scholar 

  66. 66.

    Devi LG, Kumar SG (2012) Exploring the critical dependence of adsorption of various dyes on the degradation rate using Ln3+-TiO2 surface under UV/solar light. Appl Surf Sci 261:137–146

    CAS  Google Scholar 

  67. 67.

    Zajac K, Choina J, Dolat D, Morawski A (2010) Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2. Pol J Environ Stud 19:685–691

    Google Scholar 

  68. 68.

    Sirajudheen P, Meenakshi S (2019) Facile synthesis of chitosan-La3+-graphite composite and its influence in photocatalytic degradation of methylene blue. Int J Biol Macromol 133:253–261

    CAS  PubMed  Google Scholar 

Download references


The authors highly appreciate the unlimited support introduced by Professor Peter J. S. Foot Kingston University London. Great thanks go to the Dept. of Industrial Chemistry College of Science and Dept. of Petroleum & Gas Refining Engineering College of Petroleum Processes Engineering Tikrit University Iraq.


The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information



Corresponding author

Correspondence to Omer Yasin Thayee Al-Janabi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Waheed, I.F., Al-Janabi, O.Y.T., Ibrahim, A.K. et al. MgFe2O4/CNTs nanocomposite: synthesis, characterization, and photocatalytic activity. Int J Ind Chem 11, 13–28 (2020).

Download citation


  • MgFe2O4/CNTs
  • Magnetic properties
  • Photocatalysis
  • MB degradation