Structural, optical and photocatalytic studies of hexadecylamine-capped lead sulfide nanoparticles

Abstract

Hexadecylamine-capped PbS nanoparticles were prepared from lead(II) complexes of dibenzyl dithiocarbamate (Dibzydtc) [PbS 1], imidazolyl dithiocarbamate (Imdtc) [PbS 2], 2-oxo-pyrrolidine dithiocarbamate (Pydtc) [PbS 3], diallyl dithiocarbamate (Diallyldtc) [PbS 4], and dihexyl dithiocarbamate (Dihexdtc) [PbS 5], at 120 °C. Powder X-ray diffraction patterns of the PbS nanoparticles are indexed to the face-centered cubic phase. The average particle sizes obtained from the TEM images are 19.04 ± 5.85 nm for PbS 1, 6.94 ± 1.71 nm PbS 2, 18.77 ± 3.37 nm PbS 3, 2.93 ± 2.20 nm PbS 4 and 22.02 ± 6.68 nm for PbS 5. The PbS nanoparticles are spherical in shape except for PbS 1 and PbS 3 with cubic shapes. The bandgap energies range from 3.0 to 3.8 eV and PbS 1 has the lowest bandgap of 3.0 eV while PbS 3 has the highest bandgap of 3.8 eV. The bandgaps are blue-shifted in comparison to the absorption band edges due to quantum size effect. The photocatalytic degradation of bromothymol blue by the as-prepared PbS nanoparticles showed highest degradation efficiency of 66% for PbS 3.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Khan A, Zia-ur-Rehman M-u-R, Khan R, Zulfiqar WA, Iqbal A, Shah ZH (2016) CdS nanocapsules and nanospheres as efficient solar light-driven photocatalysts for degradation of Congo red dye. Inorg Chem Commun 72:33–41

    CAS  Google Scholar 

  2. 2.

    Zhou G, Liu C, Chu L, Tang Y, Luo S (2016) Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process. Bioresour Technol 219:451–457

    CAS  PubMed  Google Scholar 

  3. 3.

    Paździor K, Wrębiak J, Klepacz-Smółka A, Gmurek M, Bilińska L, Kos L, Sójka-Ledakowicz J, Ledakowicz S (2017) Influence of ozonation and biodegradation on toxicity of industrial textile wastewater. J Environ Manag 195:166–173

    Google Scholar 

  4. 4.

    Dewil R, Mantzavinos D, Poulios I, Rodrigo MA (2017) New perspectives for advanced oxidation processes. J Environ Manag 195:93–99

    CAS  Google Scholar 

  5. 5.

    Qian X, Ren M, Yue D, Zhu Y, Han Y, Bian Z, Zhao Y (2017) Mesoporous TiO2 films coated on carbon foam based on waste polyurethane for enhanced photocatalytic oxidation of VOCs. Appl Catal B 212:1–6

    CAS  Google Scholar 

  6. 6.

    Nasir JA, Gul S, Khan A, Shah ZH, Ahmad A, Zulfiqar KR, Liu Z, Chen W, Lin D-J, Zia-ur-Rehman M (2018) Efficient solar light driven photocatalytic degradation of Congo red dye on CdS nanostructures derived from single source precursor. J Nanosci Nanotechnol 18(11):7405–7413

    CAS  Google Scholar 

  7. 7.

    Irani M, Mohammadi T, Mohebbi S (2016) Photocatalytic degradation of methylene blue with ZnO nanoparticles; a joint experimental and theoretical study. J Mex Chem Soc 60(4):218–225

    CAS  Google Scholar 

  8. 8.

    Roza L, Fauzia V, Rahman MYA (2019) Tailoring the active surface sites of ZnO nanorods on the glass substrate for photocatalytic activity enhancement. Surf Interface 15:117–124

    CAS  Google Scholar 

  9. 9.

    Wang Y, Liu Z, Huo N, Li F, Gu M, Ling X, Zhang Y, Lu K, Han L, Fang H, Shulga AG, Xue Y, Zhou S, Yang F, Tang X, Zheng J, Loi MA, Konstantatos G, Ma W (2019) Room-temperature direct synthesis of semi-conductive PbS nanocrystal inks for optoelectronic applications. Nat Commun 10(1):1–8

    Google Scholar 

  10. 10.

    Veena E, Bangera KV, Shivakumar G (2017) Effective role of thickness on structural, electrical and optical properties of lead sulphide thin films for photovoltaic applications. Mater Sci Eng B 223:64–69

    CAS  Google Scholar 

  11. 11.

    Sai CD, Luu MQ, Le VV, Nguyen PM, Pham NH, Nguyen VT, Nguyen XQ, Doan QK, Tran TH (2017) Fast Synthesis of PbS nanoparticles for fabrication of glucose sensor with enhanced sensitivity. J Electron Mater 46(6):3674–3680

    CAS  Google Scholar 

  12. 12.

    Sarma S, Mothudi BM, Dhlamini MS (2016) Unipolar resistive switching behaviour of copper doped polyvinyl alcohol/lead sulphide quantum dot device. J Mater Sci: Mater Electron 27(4):3785–3790

    CAS  Google Scholar 

  13. 13.

    Garcia-Gutierrez DF, Hernandez-Casillas LP, Cappellari MV, Fungo F, Martínez-Guerra E, García-Gutiérrez DI (2018) Influence of the capping ligand on the band gap and electronic levels of PbS nanoparticles through surface atomistic arrangement determination. ACS Omega 3(1):393–405

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Ajibade PA, Oluwalana AE (2019) Synthesis and crystal structure of bis (O-methyl hydrogenato carbonodithioate)-Pb(II): structural, optical and photocatalytic studies of PbS nanoparticles from the complex. J Coord Chem 72(22–24):3575–3588

    CAS  Google Scholar 

  15. 15.

    Salavati-Niasari M, Sobhani A, khoshrooz S, Mirzanasiri N, (2014) Preparation and characterization of PbS nanoparticles via cyclic microwave radiation using precursor of lead(II) oxalate. J Clust Sci 25(4):937–947

    CAS  Google Scholar 

  16. 16.

    Bertolotti F, Dirin DN, Ibáñez M, Krumeich F, Cervellino A, Frison R, Voznyy O, Sargent EH, Kovalenko MV, Guagliardi A, Masciocchi N (2016) Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots. Nat Mater 15(9):987–994

    CAS  PubMed  Google Scholar 

  17. 17.

    Ding Y, Bai B, Peng J (2018) Solvent thermal method to control lead sulfide nano/micron crystal and its Ni/PbS composites. Charac Appl Nanomater 1(1):30–39

    Google Scholar 

  18. 18.

    Cao Y, Stavrinadis A, Lasanta T, So D, Konstantatos G (2016) The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat Energy 1(4):16035

    CAS  Google Scholar 

  19. 19.

    Kord M, Hedayati K, Farhadi M (2017) Green synthesis and characterization of flower-like PbS and metal-doped nanostructures via hydrothermal method. Main Group Met Chem 40(1–2):35–40

    CAS  Google Scholar 

  20. 20.

    Akbay E, Ölmez TG (2018) Sonochemical synthesis and loading of PbS nanoparticles into mesoporous silica. Mater Lett 215:263–267

    CAS  Google Scholar 

  21. 21.

    Chintso T, Ajibade PA (2015) Synthesis and structural studies of hexadecylamine capped lead sulfide nanoparticles from dithiocarbamate complexes single source precursors. Mater Lett 141:1–6

    CAS  Google Scholar 

  22. 22.

    Oluwalana AE, Ajibade PA (2020) Synthesis and crystal structures of Pb (II) dithiocarbamates complexes: precursors for PbS nanophotocatalyst. J Sulfur Chem 41(2):182–199

    CAS  Google Scholar 

  23. 23.

    Ajibade PA, Oluwalana AE (2019) Structural, optical, photocatalytic and electrochemical studies of PbS nanoparticles. J Nano Res 61:18–31

    Google Scholar 

  24. 24.

    Angeloski A, Gentle AR, Scott JA, Cortie MB, Hook JM, Westerhausen MT, Bhadbhade M, Baker AT, McDonagh AM (2018) From lead(II) dithiocarbamate precursors to a fast response PbS positive temperature coefficient thermistor. Inorg Chem 57:2132–2140

    CAS  PubMed  Google Scholar 

  25. 25.

    Loc WS, Quan Z, Lin C, Pan J, Wang Y, Yang K, Jian W-B, Zhao B, Wang H, Fang J (2015) Facet-controlled facilitation of PbS nanoarchitectures by understanding nanocrystal growth. Nanoscale 7(45):19047–19052

    CAS  PubMed  Google Scholar 

  26. 26.

    Pimachev A, Dahnovsky Y (2014) Electronic structure calculations of PbS quantum rods and tubes. J Appl Phys 115(4):043705

    Google Scholar 

  27. 27.

    Mandal T, Piburn G, Stavila V, Rusakova I, Ould-Ely T, Colson AC, Whitmire KH (2011) New mixed ligand single-source precursors for PbS nanoparticles and their solvothermal decomposition to anisotropic nano-and microstructures. Chem Mater 23(18):4158–4169

    CAS  Google Scholar 

  28. 28.

    Mbese JZ, Ajibade PA (2014) Synthesis, structural and optical properties of ZnS, CdS and HgS nanoparticles from dithiocarbamato single molecule precursors. J Sulfur Chem 35:438–449

    CAS  Google Scholar 

  29. 29.

    Ali B, Al-Far R, Zaghal M, Judeh Z, Haddad S (2009) Cadmium(II) diallyldithiocarbamato complexes with 2, 2′-bipyridine and 1,10-phenanthroline: spectroscopic and crystal structure analysis. J Coord Chem 62(12):2028–2036

    CAS  Google Scholar 

  30. 30.

    Bian K, Li R, Fan H (2018) Controlled self-assembly and tuning of large PbS nanoparticle supercrystals. Chem Mater 30(19):6788–6793

    CAS  Google Scholar 

  31. 31.

    Abdallah B, Ismail A, Kashoua H, Zetoun W (2018) Effects of deposition time on the morphology, structure, and optical properties of PbS thin films prepared by chemical bath deposition. J Nanomater 2018:1826959

    Google Scholar 

  32. 32.

    Duan T, Lou W, Wang X, Xue Q (2007) Size-controlled synthesis of orderly organized cube-shaped lead sulfide nanocrystals via a solvothermal single-source precursor method. Colloids Surf A 310(1–3):86–93

    CAS  Google Scholar 

  33. 33.

    Jadhav SA, Brunella V, Scalarone D (2015) Polymerizable ligands as stabilizers for nanoparticles. Part Part Sys Char 32(4):417–428

    CAS  Google Scholar 

  34. 34.

    Kaur B, Singh K, Malik AK (2017) Effect of ligands on crystallography, morphology and photo-catalytic ability of ZnS nanostructures. Dyes Pigm 142:153–160

    CAS  Google Scholar 

  35. 35.

    Mbese JZ, Ajibade PA (2017) Synthesis, spectroscopic, structural and optical studies of Ru2S3 nanoparticles prepared from single-source molecular precursors. J Mol Struct 1143:274–281

    CAS  Google Scholar 

  36. 36.

    Chen S, Zhang X, Zhang Q, Tan W (2009) Trioctylphosphine as both solvent and stabilizer to synthesize CdS nanorods. Nanoscale Res Lett 4(10):1159

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Gao J, Johnson JC (2012) Charge trapping in bright and dark states of coupled PbS quantum dot films. ACS Nano 6(4):3292–3303

    CAS  PubMed  Google Scholar 

  38. 38.

    Rakhshani A (2000) Study of Urbach tail, bandgap energy and grain-boundary characteristics in CdS by modulated photocurrent spectroscopy. J Phys Condens Matter 12(19):4391

    CAS  Google Scholar 

  39. 39.

    Rajashree C, Balu A, Nagarethinam V (2014) Substrate temperature effect on the physical properties of spray deposited lead sulfide thin films suitable for solar control coatings. Int J Chem Tech Res 6:347–360

    CAS  Google Scholar 

  40. 40.

    Borhade A, Uphade B (2012) A comparative study on characterization and photocatalytic activities of PbS and Co doped PbS nanoparticles. Chalcogenide Lett 9(7):299–306

    CAS  Google Scholar 

  41. 41.

    Suganya M, Balu A, Balamurugan S, Srivind J, Narasimman V, Manjula N, Rajashree C, Nagarethinam V (2018) Photoconductive, photocatalytic and antifungal properties of PbS: Mo nanoparticles synthesized via precipitation method. Surf Interface 13:148–156

    CAS  Google Scholar 

  42. 42.

    Ul Ain N, Zia-ur-Rehman M, Aamir A, Khan Y, Muneeb-ur-Rehman MMU, Lin D-J (2020) Catalytic and photocatalytic efficacy of hexagonal CuS nanoplates derived from copper(II) dithiocarbamate. Mater Chem Phys 242:122408

    Google Scholar 

  43. 43.

    Nasir JA, Ambareen H, Khan A, Khan MA, Chen W, Akhter M, Zia-ur-Rehman M (2018) Photoreduction of 4-Nitrophenol to 4-Aminophenol Using CdS Nanorods. J Nanosci Nanotechnol 18(11):7516–7522

    CAS  Google Scholar 

  44. 44.

    Ajibade PA, Oluwalana AE, Sikakane BM, Singh M (2020) Structural, photocatalytic and anticancer studies of hexadecylamine capped ZnS nanoparticles. Chem Phys Lett 755:137813

    CAS  Google Scholar 

  45. 45.

    Bu F-X, Hu M, Xu L, Meng Q, Mao G-Y, Jiang D-M, Jiang J-S (2014) Coordination polymers for catalysis: enhancement of catalytic activity through hierarchical structuring. Chem Commun 50(62):8543–8546

    CAS  Google Scholar 

  46. 46.

    Kaur M, Nagaraja C (2016) Template-free syntheses of hierarchical PbS microstructures using a new sulphur source and their time-dependent morphological evolution and photocatalytic properties. RSC Adv 6(62):56790–56799

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Research Foundation and SASOL South Africa for the research grant award.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter A. Ajibade.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2876 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oluwalana, A.E., Ajibade, P.A. Structural, optical and photocatalytic studies of hexadecylamine-capped lead sulfide nanoparticles. Int J Ind Chem (2020). https://doi.org/10.1007/s40090-020-00220-2

Download citation

Keywords

  • PbS nanoparticles
  • Structural properties
  • Optical properties
  • Photocatalytic studies