Enhanced performance of terpolymer resin derived from resorcinol/formaldehyde/salicylic acid for antibacterial application

Abstract

A terpolymer resin derived from Resorcinol, Formaldehyde and Salicylic acid was synthesized through condensation reaction. Transition metal ions namely Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) were incorporated into the resin forming polymer-metal complexes. Both the resin and the complexes were characterized by FTIR, UV–Vis., XRD, 1H NMR, TGA and SEM/EDX. Elemental analysis was carried out to determine the percentage of different elements present in the resin and its complexes. Conductivity measurement data showed higher conductivity of the metal complexes as compared to its precursor resin. The terpolymer resin and its metal complexes were tested against five strains of gram positive bacteria namely; S. aureus, S. mutans, S. pyrogenes, C. xerosis, C. diphtheria, and three strains of gram negative bacteria namely; E. coli, K. pneuomoniae and P. aeruginosa. All the metal complexes exhibited enhanced antibacterial properties as compared to its terpolymer resin. The Mn(II) and Co(II) demonstrated strong antibacterial activity.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Batten SR, Neville SM, Turner DR (2009) Coordination polymers design. RSC Publishing, Analysis and Application, p 1

    Google Scholar 

  2. 2.

    Colon JY, Furukawa S (2020) Mol Syst Des Eng 5:284–293

    CAS  Article  Google Scholar 

  3. 3.

    Liu JJ, Xia BS, Que TQ, Suo H, Liu J, Shen X, Cheng F (2020) Dalton Trans. https://doi.org/10.1039/C9DT04928B

    Article  PubMed  Google Scholar 

  4. 4.

    Yang GX, Zhai MZ, Lu MX, Zhao Y, Chang HX, Ma FL (2019) Dalton Trans 48:10785–10789

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Liu QJ, Luo DZ, Pan Y, Singh KA, Trivedi M, Kumar A (2020) Coord Chem Rev 406:213145

    CAS  Article  Google Scholar 

  6. 6.

    Hu Y, Lu T, Ma Y, Xu J, Zhang Y, Hou Y, Huang Z (2019) Nano Lett 19:2731–2738

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Phillip AW, Dorin MR, Werner J, Hoek VME, Wiesner U, Elimelech M (2011) Nano Lett 11:2892–2900

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Kang ET, Chao H, Kim JH, Lee W, Kang H, Kim JB (2013) Macromol 46:6806–6813

    CAS  Article  Google Scholar 

  9. 9.

    Xu H, Cheng ZY, Dana TMO, Zhang MQ (2001) Appl Phys Lett 78:2360

    CAS  Article  Google Scholar 

  10. 10.

    Fustin C-A, Abetz V, Gohy J-F (2005) Eur Phys J E 16:291–302

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Ahamed MAR, Azarudeen RS, Karunakaran M, Burkanudeen AR (2010) Iran Polym J 19:635–646

    CAS  Google Scholar 

  12. 12.

    Bhatt RR, Shah AB, Shah VA (2012) Malays J Anal Sci 16:117–133

    Google Scholar 

  13. 13.

    Shah AB, Shah VA, Bhandari NB, Bhatt RR (2007) Iran Polym J 16:173–184

    CAS  Google Scholar 

  14. 14.

    Liu J, Qiao ZS, Liu H, Chen J, Orpe A, Zhao D, Lu QG (2011) Angew Chem 123:6069–6073

    Article  Google Scholar 

  15. 15.

    Qian Y, Zuo C, Tan J, He J (2007) Energy 32:196–202

    CAS  Article  Google Scholar 

  16. 16.

    Lu R, Gan W, Wu BH, Chen H, Wang HF (2004) J Phys Chem B 108(22):7297–7306

    CAS  Article  Google Scholar 

  17. 17.

    Holmberg VC, Rasch MR, Korgel BA (2010) Langmuir 26:14241–14246

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Taheri P, Wielant J, Hauffmanc T, Flores JR, Hannour F, de Wit JHW, Mol JMC, Terryn H (2011) Electrochim Acta 56:1904–1911

    CAS  Article  Google Scholar 

  19. 19.

    Specht HC, Frimmel HF (2001) Phys Chem Chem Phys 3:5444–5449

    CAS  Article  Google Scholar 

  20. 20.

    Tong DS, Wu CW, Adebajo MO, Jin GC, Yu WH, Ji SF, Zhou CH (2018) Appl Clay Sci 161:256–264

    CAS  Article  Google Scholar 

  21. 21.

    Oliveira RN, Mancini MC, de Oliveira FCS, Passos TM, Quilty B, da Moreira Thiré RMS, McGuinness GB, Matéria (Rio J.) 21 (2016) 767–779.

  22. 22.

    Kharas GB, Hill BL, Agos CH, Bosco PJ, Camacho JF, Clay BS, Clementz ME, Jasionowski T, Krupka RA, Muise MJ, Nelson EA, Pavlovsky G, Semp MC, Sherman AC, Stanis M (2013) J Macromol Sci A 50:797–802

    CAS  Article  Google Scholar 

  23. 23.

    Hasnain S, Zulfequar M, Nishat N (2011) J Coord Chem 64:952–964

    CAS  Article  Google Scholar 

  24. 24.

    Al Laifi AG, Al Abdullah J (2015) J Mol Struct 1093:13–23

    Article  CAS  Google Scholar 

  25. 25.

    Ahamed MAR, Burkanudeen AR (2012) J Inorg Organomet Polym 22:1046–1061

    CAS  Article  Google Scholar 

  26. 26.

    Nishat N, Hasnain S, Ahmad T, Parveen A (2011) J Therm Anal Calorim 105:969–979

    CAS  Article  Google Scholar 

  27. 27.

    Xia B-H, Zhang H-X, Che C-M, Leung K-H, Phillips DL, Zhu N, Zhou Z-Y (2003) J Am Chem Soc 125:10362–10374

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Bukhari SB, Memon S, Tahir MM, Bhanger MI (2009) Spectrochim Acta Part A 71:1901–1906.

  29. 29.

    Nishat N, Khan SA, Parveen S, Rasool R (2010) J Coord Chem 63:3944–3955

    CAS  Article  Google Scholar 

  30. 30.

    Mhadhbi N, Said S, Elleuch S, Naili H (2016) J Mol Struct 1108:223–234

    CAS  Article  Google Scholar 

  31. 31.

    Karipcin F, Dede B, Ozkorucuklu SP, Kabalcilar E (2010) Dyes Pigm 84:14–18

    CAS  Article  Google Scholar 

  32. 32.

    Kalita M, Tamuli KJ, Barman P, Sarma B, Baruah R, Prasanna H, Boruah D (2015) Polyhedron 97:140–147

    CAS  Article  Google Scholar 

  33. 33.

    Sharaby MC (2007) Spectrochim. Acta, Part A 66:1271–1278

    Article  CAS  Google Scholar 

  34. 34.

    Ozdemir O, J Photochem Photobiol A. 392 (2020) 112356

  35. 35.

    S.A.A. Nami, K.S. Siddiqi, Y. Chebude, Ind. J. Chem., 45A (2006) 1139–1143.

  36. 36.

    Gokce H, Bahceli S (2013) Spectrochim. Acta, Part A 114:61–73

    CAS  Article  Google Scholar 

  37. 37.

    Imran M, Iqbal J, Iqbal S, Ijaz N (2007) Turk J Biol 31:67–72

    CAS  Google Scholar 

  38. 38.

    Lu CC, Bill E, Weyhermuller T, Bothe E, Wieghardt K (2008) J Am Chem Soc 130:3181–3197

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Hadi MA (2013) Acta Chim Pharm Indica 3:127–134

    CAS  Google Scholar 

  40. 40.

    Zhang H-Z, Drewe J, Tseng B, Kasibhatla S, Cai SX (2004) Bioorganic. Med Chem 12:3649–3655

    CAS  Google Scholar 

  41. 41.

    Brown SP, Schnell I, Brand JD, Mullen K, Spiess HW (2000) Phys Chem Chem Phys 2:1735–2145

    CAS  Article  Google Scholar 

  42. 42.

    Fergoug T, Bouhadda Y (2014) Fuel 115:521–526

    CAS  Article  Google Scholar 

  43. 43.

    Kontogianni VG, Charisiadis P, Primikyri A, Pappas CG, Exarchou V, Tzakos AG, Gerothanassis IP (2013) Org Biomol Chem 11:1013–1025

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Kim H-D, Ishida H (2001) J Appl Polym Sci 79:1207–1219

    CAS  Article  Google Scholar 

  45. 45.

    Nishat N, Ahamad T, Zulfequar M, Hasnain S (2008) J Appl Polym Sci 110:3305–3312

    CAS  Article  Google Scholar 

  46. 46.

    Park JW, Oh SC, Lee PH, Kim HT, Yoo KO (2000) J Polym Degrad Stab 67:535–540

    CAS  Article  Google Scholar 

  47. 47.

    Wang S, Tan Z, Li Y, Sun L, Zhang T (2006) Thermochim Acta 441:191–194

    CAS  Article  Google Scholar 

  48. 48.

    Seoudi R, El-Bahy GS, El Sayed ZA (2005) J Mol Struct 753:119–126

    CAS  Article  Google Scholar 

  49. 49.

    Gallego O, Castillo CJ, Gomez-Garcia F, Zamora S (2012) Delgado. Inorg Chem 51:718–727

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Ahamad T, Nishat N, Parveen S (2008) Coord Chem 61:1963–1972

    CAS  Article  Google Scholar 

  51. 51.

    Vamsikrishna N, Daravath S, Ganji N, Pasha N (2020) Shivaraj. Inorg Chem Commun 113:107767

    CAS  Article  Google Scholar 

  52. 52.

    Bonilla M, Garcia MF (2012) Prog Polym Sci 37:281–339.

Download references

Acknowledgements

The authors are grateful to Sophisticated Instrumentation Centre (SIC), IIT Indore for providing TGA characterization facility. We are also thankful to Central Instrumentation Facility of Jamia Millia Islamia Delhi, for characterization facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nahid Nishat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammad, A., Kareem, A., Mirza, A.U. et al. Enhanced performance of terpolymer resin derived from resorcinol/formaldehyde/salicylic acid for antibacterial application. Int J Ind Chem (2020). https://doi.org/10.1007/s40090-020-00219-9

Download citation

Keywords

  • Terpolymer resin
  • Metal complex
  • Antibacterial activity