Comparison of near infrared and Raman spectroscopies for determining the cetane index of hydrogenated gas oil

Abstract

The standard method (ISO 4264) for determining the cetane index of hydrogenated gas oil is time-consuming and expensive for routine laboratory tests. Conversely, near infrared (NIR) and Raman spectroscopies are high-speed and cost-effective techniques. In this study, these tools were used to create two models for the determination of the hydrogenated gas oil cetane index. First, ISO 4264 was used to measure the cetane index for 45 real samples used as calibration standards. Then, to create the models, the same samples were measured using NIR and Raman spectroscopies. The model values were then correlated against the ISO values. The Raman model predicted cetane index values with a maximum absolute difference of 1.2 from the ISO, while the NIR model showed a difference of 0.3. Finally, 10 additional real samples were used as validation standards to compare the models. The NIR model predicted values with better cross-validation error and lower absolute differences (NIR 0.334, Raman 0.654) from the ISO values compared to the Raman model. Thus, the NIR model is a fast and accurate method that can partially substitute for ISO 4264 when performing routine laboratory tasks.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    ČSN En ISO 5165 (1998) Petroleum products—determination of the ignition quality of diesel fuel—cetane engine method. Czech Standardization Agency, Prague

    Google Scholar 

  2. 2.

    ČSN En ISO 4264 (2007) Petroleum products—calculation of cetane index of middle-distillate fuels by the four-variable equation. Czech Standardization Agency, Prague

    Google Scholar 

  3. 3.

    Jameel AGA, Oudenhoven VV, Emwas AH, Sarathy SM (2018) Predicting octane number using nuclear magnetic resonance spectroscopy and artificial neural networks. Energy Fuels 32:6309–6329. https://doi.org/10.1021/acs.energyfuels.8b00556

    CAS  Article  Google Scholar 

  4. 4.

    Jameel AGA, Naser N, Emwas AH, Dooley S, Sarathy SM (2016) Predicting fuel ignition quality using 1H NMR spectroscopy and multiple linear regression. Energy Fuels 30:9819–9835. https://doi.org/10.1021/acs.energyfuels.6b01690

    CAS  Article  Google Scholar 

  5. 5.

    Altieri G, Genovese F, Tauriello A, Di Renzo GC (2017) Models to improve the non-destructive analysis of persimmon fruit properties by VIS/NIR spectroscopy. J Sci Food Agric 97:5302–5310. https://doi.org/10.1002/jsfa.8416

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Wang B, Peng B (2017) A feasibility study on monitoring residual sugar and alcohol strength in kiwi wine fermentation using a fiber-optic FT-NIR spectroscopy and PLS regression. J Food Sci 82:358–363. https://doi.org/10.1111/1750-3841.13604

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ignat T, Schmilovitch Z, Fefoldi J, Steiner B, Alkalai-Tuvia S (2012) Non-destructive measurement of ascorbic acid content in bell peppers by VIR-NIR and SWIR spectroscopy. Postharvest Biol Technol 74:91–99. https://doi.org/10.1016/j.postharvbio.2012.06.010

    CAS  Article  Google Scholar 

  8. 8.

    Porep JU, Kammerer DR, Carle R (2015) On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci Technol 46:211–230. https://doi.org/10.1016/j.tifs.2015.10.002

    CAS  Article  Google Scholar 

  9. 9.

    Vann L, Layfield JB, Sheppard JD (2017) The application of near-infrared spectroscopy in beer fermentation for online monitoring of critical process parameters and their integration into a novel feedforward control strategy. J Inst Brew 123:347–360. https://doi.org/10.1002/jib.440

    CAS  Article  Google Scholar 

  10. 10.

    Cervera AE, Petersen NS, Lantz AE, Larsen A, Gernaey KV (2009) Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation. Biotechnol Prog 25:1561–1581. https://doi.org/10.1002/btpr.280

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Daly SR, Niemeyer KE, Cannella WJ, Hagen CL (2016) Predicting fuel research octane number using Fourier-transform infrared absorption spectra of neat hydrocarbons. Fuel 183:359–365. https://doi.org/10.1016/j.fuel.2016.06.097

    CAS  Article  Google Scholar 

  12. 12.

    Câmara ABF, de Carvalho LS, de Morais CLM, de Lima LAS, de Araújo HOM, de Oliveira FM, de Lima KMG (2017) MCR-ALS and PLS coupled to NIR/MIR spectroscopies for quantification and identification of adulterant in biodiesel-diesel blends. Fuel 210:497–506. https://doi.org/10.1016/j.fuel.2017.08.072

    CAS  Article  Google Scholar 

  13. 13.

    de Oliveira FM, de Carvalho LS, Teixeira LSG, Fontes CH, Lima KMG, Câmara ABF, Araújo HOM, Sales RV (2017) Predicting cetane index, flash point and content sulfur of diesel-biodiesel blend using an artificial neural network (ANN) model. Energy Fuels 31:3913–3920. https://doi.org/10.1021/acs.energyfuels.7b00282

    CAS  Article  Google Scholar 

  14. 14.

    Xing Y, Fuss H, Lademann J, Huang MD, Becker-Ross H, Florek S, Patzelt A, Meinke MC, Jung S, Esser N (2018) A new concept of efficient therapeutic drug monitoring using the high-resolution continuum source absorption spectroscopy and the surface enhanced Raman spectroscopy. Spectrochim Acta Part B 142:91–96. https://doi.org/10.1016/j.sab.2018.02.007

    CAS  Article  Google Scholar 

  15. 15.

    Wang M, Zheng N, Zhu T, Shang J, Yu T, Song X, Zhao D, Guan Y, Tian Y (2018) Using X-ray computed tomography and micro-Raman spectroscopy to measure individual particle surface area, volume, and morphology towards investigating atmospheric heterogeneous reactions. J Environ Sci China 69:23–32. https://doi.org/10.1016/j.jes.2018.03.015

    Article  PubMed  Google Scholar 

  16. 16.

    Sarabia-Sainz HM, Torres-Arreola W, Ezquerra-Brauer JM (2018) Spectroscopic imaging: nuclear magnetic resonance and Raman spectroscopy for the detection of collagen cross-linking from giant squid mantle, fin, and tentacle tissues. Instrum Sci Technol 46:567–581. https://doi.org/10.1080/10739149.2017.1421221

    CAS  Article  Google Scholar 

  17. 17.

    Wu Y, Chen G, Ji Ch, Hoptroff M, Jones A, Collins LZ, Janssen HG (2016) Gas chromatography-mass spectroscopy and Raman imagining measurement of squalene content and distribution in human hair. Anal Bioanal Chem 408:2357–2362. https://doi.org/10.1007/s00216-016-9335-0

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Yomogida T, Esaka F, Magara M (2017) Chemical state and isotope ratio analysis of individual uranium particles by a combination of micro-Raman spectroscopy and secondary ion mass spectroscopy. Anal Methods 9:6261–6266. https://doi.org/10.1039/c7ay01815k

    CAS  Article  Google Scholar 

  19. 19.

    Santos VOS Jr, Oliveira FCC, Lima DG, Petry AC, Garcia E, Suarez PAZ, Rubim JC (2005) A comparative study of diesel analysis by FTIR, FTNIR and FT-Raman spectroscopy using PLC and artificial neural network analysis. Anal Chim Acta 547:188–196. https://doi.org/10.1016/j.aca.2005.05.042

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The publication is a result of commercial project integrated into the National Sustainability Programme I of the Ministry of Education, Youth and Sports of the Czech Republic through the project Development of the UniCRE Centre (LO1606).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Romana Velvarská.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Velvarská, R., Fiedlerová, M., Kadlec, D. et al. Comparison of near infrared and Raman spectroscopies for determining the cetane index of hydrogenated gas oil. Int J Ind Chem (2020). https://doi.org/10.1007/s40090-020-00216-y

Download citation

Keywords

  • NIR
  • Raman spectroscopy
  • Cetane index
  • Hydrogenated gas oil
  • PLS algorithm