Influence of Fe dopant concentrations on physicochemical and photocatalytic properties of Bi2WO6/CeO2 nanocomposites for rhodamine B degradation

Abstract

Fe-doped Bi2WO6/CeO2 nanocomposite materials were prepared by co-precipitation and hydrothermal methods. The physicochemical properties and photocatalytic activities of Bi2WO6/CeO2 nanocomposites after doping with Fe3+ ions were systematically investigated. The 0.2Fe-doped Bi2WO6/CeO2 nanocomposites exhibited the optimal photocatalytic activity in the degradation of rhodamine B (RhB), reaching to 62% degradation after 120 min irradiation, which was 10.3 and 2.7 times higher than CeO2 and Bi2WO6, respectively. The improved photocatalytic activity was mainly ascribed to the enhanced charge carrier separation efficiency of the direct Z-scheme heterojunction system. Moreover, the effective trapping of photogenerated electrons and holes by iron ions inhibits the electron–hole recombination. By a trapping experiment, the main radicals (O2·−) in the photocatalysis experiment were further ascertained. Finally, we proposed the photocatalytic mechanism of Fe-doped Bi2WO6/CeO2 nanocomposite for RhB degradation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Maria Magdalanea C, Kaviyarasu K, Arularasud MV, Kanimozhie K, Ramalingamf G (2019) Structural and morphological properties of Co3O4 nanostructures: investigation of low temperature oxidation for photocatalytic application for wastewater treatment. Surf Interfaces 17:100369

    Google Scholar 

  2. 2.

    Poovaragan S, Sundaram R, Maria Magdalane C, Kaviyarasu K, Maaza M (2019) Photocatalytic activity and humidity sensor studies of magnetically reusable FeWO4-WO3 composite nanoparticles. J Nanosci Nanotechnol 19:859–866

    CAS  PubMed  Google Scholar 

  3. 3.

    Ray SK, Kshetri YK, Dhakal D, Regmi C, Lee SW (2017) Photocatalytic degradation of Rhodamine B and Ibuprofen with upconversion luminescence in Ag-BaMoO4: Er3+/Yb3+/K+ microcrystals. J Photoch Photobio A 339:36–48

    CAS  Google Scholar 

  4. 4.

    Nadeem MA, Ajmal A, Malik RN, Majeed I, Idriss H (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026

    Google Scholar 

  5. 5.

    Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B-Environ 49:1–14

    CAS  Google Scholar 

  6. 6.

    Mobeen A, Maria Magdalane C, Jasmine Shahina SK, Lakshmi D, Sundaram R, Ramalingam G, Raja A, Madhavan J, Letsholathebe D, Bashir AKH, Maaza M, Kaviyarasu K (2019) Investigation on antibacterial and photocatalytic degradation of Rhodamine-B dye under visible light irradiation by titanium molybdate nanoparticles prepared via microwave method. Surf Interfaces 17:100381

    CAS  Google Scholar 

  7. 7.

    Baldev E, Mubarakali D, Ilavarasi A, Pandiaraj D, Sheik Syed Ishack KA, Thajuddin N (2013) Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloid Surf B 105:207–214

    CAS  Google Scholar 

  8. 8.

    Zahrim AY, Hilal N (2013) Treatment of highly concentrated dye solution by coagulation/flocculation-sand filtration and nanofiltration. Water Resour Ind 3:23–34

    Google Scholar 

  9. 9.

    Tajizadegan H, Jafari M, Rashidzadeh M, Saffar-Teluri A (2013) A high activity adsorbent of ZnO-Al2O3 nanocomposite particles: synthesis, characterization and dye removal efficiency. Appl Surf Sci 276:317–322

    CAS  Google Scholar 

  10. 10.

    Kermani M, Izanloo H, Kalantary RR, Barzaki HS, Kakavandi B (2017) Study of the performances of low-cost adsorbents extracted from Rosa damascena in aqueous solutions decolorization. Desalin Water Treat 80:357–369

    CAS  Google Scholar 

  11. 11.

    Babaei AA, Alavi SN, Akbarifar M, Ahmadi K, Esfahani AR, Kakavandi B (2016) Experimental and modeling study on adsorption of cationic methylene blue dye onto mesoporous biochars prepared from agrowaste. Desalin Water Treat 57(56):27199–27212

    CAS  Google Scholar 

  12. 12.

    Alhaji NMI, Nathiya D, Kaviyarasu K, Meshram M, Ayeshamariam A (2019) A comparative study of structural and photocatalytic mechanism of AgGaO2 nanocomposites for equilibrium and kinetics evaluation of adsorption parameters. Surf Interfaces 17:100375

    Google Scholar 

  13. 13.

    Gregory R, Dhond RV (1972) Wastewater treatment by ion exchange. Water Res IN1:685–694

    Google Scholar 

  14. 14.

    Lee KC, Choo KH (2014) Optimization of flocculation conditions for the separation of TiO2 particles in coagulation-photocatalysis hybrid water treatment. Chem Eng Process 78:11–16

    CAS  Google Scholar 

  15. 15.

    Kakavandi B, Bahari N, Kalantary RR, Fard ED (2019) Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: a new hybrid system. Ultrason Sonochem 55:75–85

    CAS  PubMed  Google Scholar 

  16. 16.

    Isari AA, Payan A, Fattahi M, Jorfi S, Kakavandi B (2018) Photocatalytic degradation of Rhodamine B and Real Textile Wastewater using Fe-Doped TiO2 anchored on Reduced Graphene Oxide (Fe-TiO2/rGO): characterization and feasibility, mechanism and pathway studies. Appl Surf Sci 462:549–564

    CAS  Google Scholar 

  17. 17.

    Golshan M, Kakavandi B, Ahmadi M, Azizi M (2018) Photocatalytic activation of peroxymonosulfate by TiO2 anchored on cupper ferrite (TiO2@CuFe2O4) into 2,4-d degradation: process feasibility, mechanism and pathway. J Hazard Mater 359:325–337

    CAS  PubMed  Google Scholar 

  18. 18.

    Kermani M, Kakavandi B, Farzadkia M, Esrafili A, Jokandan SF, Shahsavani A (2018) Catalytic ozonation of high concentrations of catechol over TiO2@Fe3O4 magnetic core-shell nanocatalyst: optimization, toxicity and degradation pathway studies. J Clean Prod 192:597–607

    CAS  Google Scholar 

  19. 19.

    Galindo C, Jacques P, Kalt A (2001) Photooxidation of the phenylazonaphthol AO2O on TiO2: kinetic and mechanistic investigations. Chemosphere 45:997–1005

    CAS  PubMed  Google Scholar 

  20. 20.

    Kuo WS, Ho PH (2001) Solar photocatalytic decolorization of methylene blue in water. Chemosphere 45:77–83

    CAS  PubMed  Google Scholar 

  21. 21.

    Saison T, Chemin N, Chanéac C, Durupthy O, Ruaux V, Mariey L, Maugç F, Beaunier P, Jolivet J-P (2011) Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J Phys Chem C 115:5657–5666

    CAS  Google Scholar 

  22. 22.

    Liu M, Xue X, Yu S, Wang X, Hu X, Tian H, Chen H, Zheng W (2017) Improving photocatalytic performance from Bi2WO6@MoS2/graphene hybrids via gradual charge transferred pathway. Sci Rep 7:1–7

    Google Scholar 

  23. 23.

    Du Z, Cheng C, Tan L, Lan J, Jiang S, Zhao L, Guo R (2018) Enhanced photocatalytic activity of Bi2WO6/TiO2 composite coated polyester fabric under visible light irradiation. Appl Surf Sci 435:626–634

    CAS  Google Scholar 

  24. 24.

    Kusdianto K, Jiang D, Kubo M, Shimada M (2018) Effect of annealing temperature on the photocatalytic activity of Ag-TiO2 nanocomposite films by one-step gas-phase deposition. Mater Res Bull 97:497–505

    CAS  Google Scholar 

  25. 25.

    Li S, Hu S, Jiang W, Liu Y, Liu J, Wang Z (2017) Facile synthesis of flower-like Ag3VO4/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity. J Colloid Interf Sci 501:156–163

    CAS  Google Scholar 

  26. 26.

    Zhu Y, Wang Y, Ling Q, Zhu Y (2017) Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl Catal B-Environ 200:222–229

    CAS  Google Scholar 

  27. 27.

    Hojamberdiev M, Kadirovac ZC, Makinose Y, Zhu G, Emin S, Matsushita N, Hasegawa M, Okada K (2017) Involving CeVO4 in improving the photocatalytic activity of a Bi2WO6/allophane composite for the degradation of gaseous acetaldehyde under visible light. Colloids Surf A 529:600–612

    CAS  Google Scholar 

  28. 28.

    Dong S, Ding X, Guo T, Yue X, Han X, Sun J (2017) Self-assembled hollow sphere shaped Bi2WO6/RGO composites for efficient sunlight-driven photocatalytic degradation of organic pollutants. Chem Eng J 316:778–789

    CAS  Google Scholar 

  29. 29.

    Zhang XF, Gong Y, Dong XL, Zhang XX, Ma C, Shi F (2012) Fabrication and efficient visible light-induced photocatalytic activity of Bi2WO6/BiVO4 heterojunction. Mater Chem Phys 136:472–476

    CAS  Google Scholar 

  30. 30.

    Li XN, Huang RK, Hu YH, Chen YJ, Liu WJ, Yuan RS, Li ZH (2012) A templated method to Bi2WO6 hollow microspheres and their conversion to double-shell Bi2O3/Bi2WO6 hollow microspheres with improved photocatalytic performance. Inorg Chem 51:6245–6250

    CAS  PubMed  Google Scholar 

  31. 31.

    Gui MS, Zhang WD, Chang YQ, Yu YX (2012) One-step hydrothermal preparation strategy for nanostructured WO3/Bi2WO6 heterojunction with high visible light photocatalytic activity. Chem Eng J 197:283–288

    CAS  Google Scholar 

  32. 32.

    Ji P, Zhang J, Chen F, Anpo M (2009) Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation. Appl Catal B-Environ 85:148–154

    CAS  Google Scholar 

  33. 33.

    Zhai YQ, Zhang SY, Pang H (2007) Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant. Mater Lett 61:1863–1866

    CAS  Google Scholar 

  34. 34.

    Borker P, Salker AV (2007) Solar assisted photocatalytic degradation of Naphthol Blue Black dye using Ce1−xMnxO2. Mater Chem Phys 103:366–370

    CAS  Google Scholar 

  35. 35.

    Qian L, Zhu J, Du W, Qian X (2009) Solvothermal synthesis, electrochemical and photocatalytic properties of monodispersed CeO2 nanocubes. Mater Chem Phys 115:835–840

    CAS  Google Scholar 

  36. 36.

    Zhang LS, Wang WZ, Chen ZG, Zhou L, Xu HL, Zhu W (2007) Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J Mater Chem 17:2526–2532

    CAS  Google Scholar 

  37. 37.

    Swain G, Sultana S, Naik B, Parida K (2017) Coupling of crumpled-type novel MoS2 with CeO2 nanoparticles: a noble-metal-free pn heterojunction composite for visible light photocatalytic H2 production. ACS Omega 2(7):3745–3753

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phamichphant S, Minett AI, Chen J (2012) BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces 4(7):3718–3723

    CAS  PubMed  Google Scholar 

  39. 39.

    Maria Magdalane C, Kaviyarasu K, Matinise N, Mayedwa N, Mongwaketsi N, Letsholathebe D, Mola GT, Abdullah Al-Dhabi N, Arasu MV, Henini M, Kennedy J, Maaza M, Jeyaraj B (2018) Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/visible light induced removal of organic dye from urban wastewater. S Afr J Chem Eng 26:49–60

    Google Scholar 

  40. 40.

    Kasinathan K, Kennedy J, Elayaperumal M, Henini M, Malik M (2016) Photodegradation of organicpollutants RhB dye using UV simulated sunlight on ceria based TiO2 nanomaterials for antibacterial applications. Sci Rep 6:38064

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Wen XJ, Zhang C, Niu CG, Zhang L, Zeng GM, Zhang XG (2017) Highly enhanced visible light photocatalytic activity of CeO2 through fabricating a novel p-n junction BiOBr/CeO2. Catal Commun 90:51–55

    CAS  Google Scholar 

  42. 42.

    Issarapanacheewin S, Wetchakun K, Phanichphant S, Kangwansupamonkon W, Wetchakun N (2016) Photodegradation of organic dyes by CeO2/Bi2WO6 nanocomposite and its physicochemical properties investigation. Ceram Int 42:16007–16016

    CAS  Google Scholar 

  43. 43.

    Hao S, Hou J, Aprea P, Lv T (2014) Photocatalytic activity under weak visible light of Fe3+ doped mesoporous CeO2. Ind Eng Chem Res 53:14617–14622

    CAS  Google Scholar 

  44. 44.

    Ranjith KS, Dong CL, Lu YR, Huang YC, Chen CL, Saravanan P, Asokan K, Kumar RTR (2018) Evolution of visible photocatalytic properties of Cu doped CeO2 nanoparticles: role of Cu2+ mediated oxygen vacancies and the mixed valence States of Ce Ions. ACS Sustain Chem Eng 6(7):8536–8546

    CAS  Google Scholar 

  45. 45.

    Sriwichai S, Ranwongsa H, Wetchakun K, Phanichphant S, Wetchakun N (2014) Effect of iron loading on the photocatalytic performance of Bi2WO6 photocatalyst. Superlattices Microstruct 76:362–375

    CAS  Google Scholar 

  46. 46.

    Maria Magdalane C, Kanimozhi K, Arularasu MV, Ramalingam G, Kaviyarasu K (2019) Self-cleaning mechanism of synthesized SnO2/TiO2 nanostructure for photocatalytic activity application for waste water treatment. Surf Interfaces 17:100346

    Google Scholar 

  47. 47.

    Subba Reddy Y, Maria Magdalane C, Kaviyarasu K, Genene Tessema Mola A, Kennedy J, Maaza M (2018) Equilibrium and kinetic studies of the adsorption of acid blue 9 and safranin O from aqueous solutions by MgO decked FLG coated fuller’s earth. J Phys Chem Solids 123:43–51

    CAS  Google Scholar 

  48. 48.

    Jacobsson TJ, Pazoki M, Hagfeldt A, Edvinsson T (2015) Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: Theory and preliminary experiments on CH3NH3SrI3. J Phys Chem C 119:25673–25683

    CAS  Google Scholar 

  49. 49.

    Sato T, Takagi S, Deledda S, Hauback BC, Orimo S (2016) Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds. Sci Rep 6:1–10

    Google Scholar 

  50. 50.

    Liu S, Yu J (2008) Cooperative self-construction and enhanced optical absorption of nanoplates-assembled hierarchical Bi2WO6 flowers. J Solid State Chem 181:1048–1055

    CAS  Google Scholar 

  51. 51.

    Yu J, Su Y, Cheng B, Zhou M (2008) Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method. J Mol Catal A-Chem 258:104–112

    Google Scholar 

  52. 52.

    Guo S, Li X, Wang H, Dong F, Wu Z (2012) Fe-ions modified mesoporous Bi2WO6 nanosheets with high visible light photocatalytic activity. J Colloid Interf Sci 369:373–380

    CAS  Google Scholar 

  53. 53.

    Li Z, Zhu L, Wu W, Wang S, Qiang L (2016) Highly efficient photocatalysis toward tetracycline under simulated solar-light by Ag+-CDs-Bi2WO6: synergistic effects of silver ions and carbon dots. Appl Catal B-Environ 192:277–285

    CAS  Google Scholar 

  54. 54.

    Fan H, Wang G, Hu L, Infrared (2009) Raman and XPS spectroscopic studies of Bi2O3-B2O3-Ga2O3 glasses. Solid State Sci 11:2065–2070

    CAS  Google Scholar 

  55. 55.

    Navío C, Vallejos S, Stoycheva T, Llobet E, Correig X, Snyders R, Blackman C, Umek P, Ke X, Tendeloo GV, Bittencourt C (2012) Gold clusters on WO3 nanoneedles grown via AACVD: XPS and TEM studies. Mater Chem Phys 134:809–813

    Google Scholar 

  56. 56.

    Shpak AP, Korduban AM, Medvedskij MM, Kandyba VO (2007) XPS studies of active elements surface of gas sensors based on WO3–x nanoparticles. J Electron Spectrosc 156–158:172–175

    Google Scholar 

  57. 57.

    Gui MS, Zhang WD, Su QX, Chen CH (2011) Synthesis, structure and physical properties of LnNi(Sn, Sb)3 (Ln=Pr, Nd, Sm, Gd, Tb). J Solid State Chem 184:1977–1982

    CAS  Google Scholar 

  58. 58.

    Huang J, Tan GQ, Ren HJ, Yang W, Xu C, Zhao CC, Xia A (2014) Photoelectric activity of a Bi2O3/Bi2WO6–xF2x heterojunction prepared by a simple one-step microwave hydrothermal method. ACS Appl Mater Interfaces 6:21041–21050

    CAS  PubMed  Google Scholar 

  59. 59.

    Shahed SMF, Hasegawa T, Sainoo Y, Watanabe Y, Isomura N, Beniya A, Hirata H, Komeda T (2014) STM and XPS study of CeO2(111) reduction by atomic hydrogen. Surf Sci 628:30–35

    CAS  Google Scholar 

  60. 60.

    Liu X, Lu Q, Liu J (2016) Electrospinning preparation of one-dimensional ZnO/Bi2WO6 heterostructured sub-microbelts with excellent photocatalytic performance. J Alloy Compd 662:598–606

    CAS  Google Scholar 

  61. 61.

    Wang X, Lin Y, Ding X, Jiang J (2011) Enhanced visible-light-response photocatalytic activity of bismuth ferrite nanoparticles. J Alloy Compd 509:6585–6588

    CAS  Google Scholar 

  62. 62.

    Omran M, Fabritius T, Elmahdy AM, Khalek NAA, Aref ME, Elmanawi AEH (2015) XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Appl Surf Sci 345:127–140

    CAS  Google Scholar 

  63. 63.

    Jesudoss SK, Vijaya JJ, Iyyappa Rajan P, Kaviyarasu K, Sivachidambaram M, John Kennedy L, Al-Lohedan HA, Jothiramalingam R (2017) High performance multifunctional green Co3O4 spinel nanoparticles: photodegradation of textile dye effluents, catalytic hydrogenation of nitro-aromatics and antibacterial potential. Photochem Photobiol Sci 16:766–778

    CAS  PubMed  Google Scholar 

  64. 64.

    Sivachidambaram M, Judith Vijaya J, Kaviyarasu K, John Kennedy L, Al-Lohedane HA, Ramalingam RJ (2017) A novel synthesis protocol for Co3O4 nanocatalysts and their catalytic applications. RSC Adv 7:38861–38870

    CAS  Google Scholar 

  65. 65.

    Channei D, Inceesungvorn B, Wetchakun N, Ukritnukun S, Nattestad A, Chen J, Phanichphant S (2014) Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation. Sci Rep 4:5757

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Arul NS, Mangalaraj D, Han JI (2015) Enhanced photocatalytic property of self-assembled Fe-doped CeO2 hierarchical nanostructures. Mater Lett 145:189–192

    Google Scholar 

  67. 67.

    Zhao B, Shao Q, Hao L, Zhang L, Liu Z, Zhang B, Ge S, Guo Z (2018) Yeast-template synthesized Fe-doped cerium oxide hollow microspheres for visible photodegradation of acid orange 7. J Colloid Interf Sci 511:39–47

    CAS  Google Scholar 

  68. 68.

    Wang W, Zhu Q, Qin F, Dai Q, Wang X (2018) Fe-doped CeO2 nanosheets as Fenton-like heterogeneous catalysts for degradation of salicylic acid. Chem Eng J 333:226–239

    CAS  Google Scholar 

  69. 69.

    Wang DJ, Yue LL, Guo L, Zhang J, Fu F, Xue GL (2014) Synthesis and enhanced photocatalytic mechanism of Fe3+ doped three-dimensional Bi2WO6 hierarchical nanoarchitectures. Chinese J Inorg Chem 30:1–8

    Google Scholar 

  70. 70.

    Swain G, Sultana S, Naik B, Parida K (2017) Coupling of crumpled-type novel MoS2 with CeO2 nanoparticles: a noble-metal-free p-n heterojunction composite for visible light photocatalytic H2 production. ACS Omega 2:3745–3753

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Gu S, Li W, Wang F, Wang S, Zhou H, Li H (2015) Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: effect of heterojunction structure on the enhancement of photocatalytic activity. Appl Catal B-Environ 170–171:186–194

    Google Scholar 

  72. 72.

    Xue S, Wei Z, Hou X, Xie W, Li S, Shang X, He D (2015) Enhanced visible-light photocatalytic activities and mechanism insight of BiVO4/Bi2WO6 composites with virus-like structures. Appl Surf Sci 355:1107–1115

    CAS  Google Scholar 

  73. 73.

    Wang Z, Lv J, Zhang J, Dai K, Liang C (2018) Facile synthesis of Z-scheme BiVO4/porous graphite carbon nitride heterojunction for enhanced visible-light-driven photocatalyst. App Surf Sci 430:595–602

    CAS  Google Scholar 

  74. 74.

    He R, Zhou J, Fu H, Zhang S, Jiang C (2018) Room-temperature in situ fabrication of Bi2O3/g-C3N4 direct Z-scheme photocatalyst with enhanced photocatalytic activity. Appl Surf Sci 430:273–282

    CAS  Google Scholar 

  75. 75.

    Xu Q, Zhang L, Yu J, Wageh S, Al-Ghamdi AA, Jaroniec M (2018) Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater Today 21(10):1042–1063

    CAS  Google Scholar 

  76. 76.

    Di T, Xu Q, Ho WK, Tang H, Xiang Q, Yu J (2019) Review on Metal Sulphide-based Z-scheme photocatalysts. ChemCatChem 11:1394–1411

    CAS  Google Scholar 

  77. 77.

    Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B-Environ 243:556–565

    CAS  Google Scholar 

  78. 78.

    Luo Z, Gao QH (1992) Decrease in the Fe photoactivity of TiO2 pigment on doping with transition metals. J Photoch Photobio A 96:367–375

    Google Scholar 

  79. 79.

    Zare M, Mortezaali A, Shafiekhani A (2016) Photoelectrochemical determination of shallow and deep trap states of platinum-decorated TiO2 nanotube arrays for photocatalytic applications. J Phys Chem C 120:9017–9027

    CAS  Google Scholar 

  80. 80.

    Antila LJ, Santomauro FG, Hammarstrӧm L, Fernandes DLA, Sá J (2015) Hunting for the elusive shallow traps in TiO2 anatase. Chem Commun 51:10914–10916

    CAS  Google Scholar 

  81. 81.

    Yu JG, Yu HG, Ao CH, Lee SC, Yu JC, Ho WK (2006) Preparation, characterization and photocatalytic activity of in situ Fe-doped TiO2 thin films. Thin Solid Films 496:273–280

    CAS  Google Scholar 

  82. 82.

    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Research Fund for the Research Career Development Grant (Research Scholar Award; RSA5980035) and Chiang Mai University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Natda Wetchakun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wetchakun, N., Wetchakun, K. & Sakulsermsuk, S. Influence of Fe dopant concentrations on physicochemical and photocatalytic properties of Bi2WO6/CeO2 nanocomposites for rhodamine B degradation. Int J Ind Chem (2020). https://doi.org/10.1007/s40090-020-00214-0

Download citation

Keywords

  • Bi2WO6/CeO2
  • Iron doping
  • Nanocomposite
  • Photocatalytic activity
  • Wastewater treatment