Skip to main content
Log in

Synthesis of cellulose nanofibers from lignocellulosic materials and their photocatalytic dye degradation studies

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

The present research emphasizes lignocellulosic materials like agricultural biomass such as Ragi Stalk also known as Finger Millet Stalk (Eleusine coracana), Mango Wood (Mangifera caesia), and Groundnut husk (Arachis hypogaea) were transformed into cellulose by pretreatment with 5% NaOH and 5% NaClO2 Solution. In addition, the cellulose obtained was transformed into nanocellulose (NC) using acid hydrolysis, ultrasonication, and centrifugation. XRD (X-ray diffraction), SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared Spectroscopy), and TGA/DTA (Thermogravimetry and Differential Thermal Analysis) are used to characterize the nanocellulose that has been synthesized. According to the FTIR findings, the chemical structure of cellulose synthesized from these agricultural biomasses was not affected by the synthetic approach. According to SEM studies, the synthetic procedure employed affects the morphology/surface topology of synthesized nanocellulose. XRD studies reveal the crystalline and semi-crystalline nature of the synthesized nanocellulose. TEM monographs illustrate the morphology and size of the synthesized nanocellulose ranging from 8 to 17 nm. The thermal stability of nanocellulose is revealed by TGA/DTA studies and the obtained nanocellulose shows thermal stability in the range of 270 to 472 °C. A photocatalytic degradation study was carried out for the synthesized NCs like acid hydrolyzed ragi stalk nano cellulose (AH-RSNC), acid hydrolyzed mango wood nanocellulose (AH-MWNC) and acid hydrolyzed groundnut husk nanocellulose (AH-GHNC) for methylene blue (MB) dye under UV light radiation. For the AH-MWHC sample, the dye removal efficiency was obtained at 80%, which indicated an exceptional better dye degradation percentage when compared to the AH-RSNC and AH-GHNC samples. All photocatalytic activity was recorded using a UV–Vis spectrophotometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig.11
Fig.12
Fig.13
Fig. 14

Similar content being viewed by others

Availability of data and materials

None.

References

  1. Nishino, T., Peijs, T.: All-cellulose composites. In: Handbook of Green Materials: 2 Bionanocomposites: Processing, Characterization, and Properties, pp. 201–216 (2014). https://doi.org/10.1142/9789814566469_0028

  2. Yamaguchi, A., Sakamoto, H., Kitamura, T., Hashimoto, M., Suye, S.I.: Structure retention of proteins interacting electrostatically with TEMPO-oxidized cellulose nanofiber surface. Colloids Surf. B Biointerfaces 183, 110392 (2019). https://doi.org/10.1016/j.colsurfb.2019.110392

    Article  CAS  Google Scholar 

  3. Börjesson, M., Westman, G.: Crystalline nanocellulose—preparation, modification, and properties. Cellul.-Fundam. Aspects Curr. Trends 7 (2015)

  4. Espinosa, E., Sánchez, R., Otero, R., Domínguez-Robles, J., Rodríguez, A.: A comparative study of the suitability of different cereal straws for lignocellulose nanofibers isolation. Int. J. Biol. Macromol. 103, 990–999 (2017). https://doi.org/10.1016/j.ijbiomac.2017.05.156

    Article  CAS  Google Scholar 

  5. Kargarzadeh, H., Ioelovich, M., Ahmad, I., Thomas, S., Dufresne, A.: Methods for extraction of nanocellulose from various sources. Handb. Nanocellul. Cellul. Nanocompos. 1, 1–51 (2017)

    CAS  Google Scholar 

  6. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)

    Article  CAS  Google Scholar 

  7. Dufresne, A.: Nanocellulose: From Nature to High Performance Tailored Materials. Walter de Gruyter GmbH & Co KG, Berlin (2017)

    Book  Google Scholar 

  8. Chami Khazraji, A., Robert, S.: Interaction effects between cellulose and water in nanocrystalline and amorphous regions: a novel approach using molecular modeling. J. Nanomater. (2013). https://doi.org/10.1155/2013/409676

    Article  Google Scholar 

  9. Mansfield, M.L.: Temperature-dependent changes in the structure of the amorphous domains of semicrystalline polymers. Macromolecules 20(6), 1384–1393 (1987)

    Article  CAS  Google Scholar 

  10. Habibi, Y., Lucia, L.A., Rojas, O.J.: Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010). https://doi.org/10.1021/cr900339w

    Article  CAS  Google Scholar 

  11. Faruk, O., Sain, M., Farnood, R., Pan, Y., Xiao, H.: Development of lignin and nanocellulose enhanced bio PU foams for automotive parts. J. Polym. Environ. 22(3), 279–288 (2014)

    Article  CAS  Google Scholar 

  12. Pinto, L.O., Bernardes, J.S., Rezende, C.A.: Low-energy preparation of cellulose nanofibers from sugarcane bagasse by modulating the surface charge density. Carbohydr. Polym. 218, 145–153 (2019). https://doi.org/10.1016/j.carbpol.2019.04.070

    Article  CAS  Google Scholar 

  13. Ferreira, E.S., Rezende, C.A.: Simple preparation of cellulosic lightweight materials from eucalyptus pulp. ACS Sustain. Chem. Eng. 6(11), 14365–14373 (2018). https://doi.org/10.1021/acssuschemeng.8b03071

    Article  CAS  Google Scholar 

  14. Morais, J.P.S., de Freitas Rosa, M., Nascimento, L.D., Do Nascimento, D.M., Cassales, A.R.: Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 91(1), 229–235 (2013). https://doi.org/10.1016/j.carbpol.2012.08.010

    Article  CAS  Google Scholar 

  15. Fillat, Ú., Wicklein, B., Martín-Sampedro, R., Ibarra, D., Ruiz-Hitzky, E., Valencia, C., Eugenio, M.E.: Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydr. Polym. 179, 252–261 (2018). https://doi.org/10.1016/j.carbpol.2017.09.072

    Article  CAS  Google Scholar 

  16. Liu, Y., Sui, Y., Liu, C., Liu, C., Wu, M., Li, B., Li, Y.: A: Physically cross linked polydopamine/nanocellulose hydrogel as potential versatile vehicles for drug delivery and wound healing. Carbohydr. Polym. 188, 27–36 (2018). https://doi.org/10.1016/j.carbpol.2018.01.093

    Article  CAS  Google Scholar 

  17. Espinosa, E., Bascón-Villegas, I., Rosal, A., Pérez-Rodríguez, F., Chinga-Carrasco, G., Rodríguez, A.: PVA/(ligno) nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. Int. J. Biol. Macromol. 141, 197–206 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.262

    Article  CAS  Google Scholar 

  18. Jagadesh, P., Ramachandramurthy, A., Murugesan, R.: Evaluation of mechanical properties of Sugar Cane Bagasse Ash concrete. Constr. Build. Mater. 176, 608–617 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.037

    Article  CAS  Google Scholar 

  19. Lin, N., Dufresne, A.: Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59, 302–325 (2014). https://doi.org/10.1016/j.eurpolymj.2014.07.025

    Article  CAS  Google Scholar 

  20. Liu, S., Cheng, G., Xiong, Y., Ding, Y., Luo, X.: Adsorption of low concentrations of bromide ions from water by cellulose-based beads modified with TEMPO-mediated oxidation and Fe (III) complexation. J. Hazard. Mater. 384, 121195 (2020). https://doi.org/10.1016/j.jhazmat.2019.121195

    Article  CAS  Google Scholar 

  21. Feng, L., Chen, Z.L.: Research progress on dissolution and functional modification of cellulose in ionic liquids. J. Mol. Liq. 142(1–3), 1–5 (2008)

    Article  Google Scholar 

  22. Wulandari, W.T., Rochliadi, A., Arcana, I.M.: Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. In: IOP conference series: materials science and engineering, vol. 107, no. 1, p. 012045). IOP Publishing (2016)

  23. Mohaiyiddin, M.S., Ong, H.L., Othman, M.B.H., Julkapli, N.M., Villagracia, A.R.C., Md. Akil, H.: Swelling behavior and chemical stability of chitosan/nanocellulose biocomposites. Polym. Compos. 39, E561–E572 (2018). https://doi.org/10.1002/pc.24712

    Article  CAS  Google Scholar 

  24. Deepa, B., Abraham, E., Cherian, B.M., Bismarck, A., Blaker, J.J., Pothan, L.A., Kottaisamy, M.: Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Biores. Technol. 102(2), 1988–1997 (2011)

    Article  CAS  Google Scholar 

  25. Jiang, F., Hsieh, Y.L.: Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr. Polym. 95(1), 32–40 (2013)

    Article  CAS  Google Scholar 

  26. Hubbe, M.A., Rojas, O.J., Lucia, L.A., Sain, M.: Cellulosic nanocomposites: a review. BioResources 3(3), 929–980 (2008)

    Article  Google Scholar 

  27. Mahardika, M., Abral, H., Kasim, A., Arief, S., Asrofi, M.: Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6(2), 28 (2018). https://doi.org/10.3390/fib6020028

    Article  CAS  Google Scholar 

  28. Asrofi, M., Abral, H., Kasim, A., Pratoto, A., Mahardika, M., Park, J.W., Kim, H.J.: Isolation of nanocellulose from water hyacinth fiber (WHF) produced via digester-sonication and its characterization. Fibers Polym. 19(8), 1618–1625 (2018)

    Article  CAS  Google Scholar 

  29. Wang, Y., Wei, X., Li, J., Wang, F., Wang, Q., Zhang, Y., Kong, L.: Homogeneous isolation of nanocellulose from eucalyptus pulp by high pressure homogenization. Ind. Crops Prod. 104, 237–241 (2017). https://doi.org/10.1016/j.indcrop.2017.04.032

    Article  CAS  Google Scholar 

  30. Brinchi, L., Cotana, F., Fortunati, E., Kenny, J.M.: Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr. Polym. 94(1), 154–169 (2013). https://doi.org/10.1016/j.carbpol.2013.01.033

    Article  CAS  Google Scholar 

  31. Wang, N., Ding, E., Cheng, R.: Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12), 3486–3493 (2007)

    Article  CAS  Google Scholar 

  32. Dong, X.M., Revol, J.-F., Gray, D.G.: Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1), 19–32 (1998)

    Article  CAS  Google Scholar 

  33. Sasmal, S., Mohanty, K.: Pretreatment of lignocellulosic biomass toward biofuel production. In: Biorefining of Biomass to Biofuels, pp. 203–221. Springer, Cham (2018)

    Chapter  Google Scholar 

  34. Gopal, P., Mira, P., Kim, H.Y., Lee, S.Y., Park, S.J.: Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes. A review. J. Ind. Eng. Chem. 21, 26–35 (2015). https://doi.org/10.1016/j.jiec.2014.03.044

    Article  CAS  Google Scholar 

  35. Al-Dulaimi, A.A., Wanrosli, W.D.: Isolation and characterization of nanocrystalline cellulose from totally chlorine free oil palm empty fruit bunch pulp. J. Polym. Environ. 25, 192–202 (2017). https://doi.org/10.1007/s10924-016-0798-z

    Article  CAS  Google Scholar 

  36. Kargarzadeh, H., Ahmad, I., Abdullah, I., et al.: Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19, 855–866 (2012). https://doi.org/10.1007/s10570-012-9684-6

    Article  CAS  Google Scholar 

  37. Kian, L.K., Jawaid, M., Ariffin, H., Karim, Z.: Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol. 114, 54–63 (2018). https://doi.org/10.1016/j.ijbiomac.2018.03.065

    Article  CAS  Google Scholar 

  38. Jamal, N., Radhakrishnan, A., Raghavan, R., Bhaskaran, B.: Efficient photocatalytic degradation of organic dye from aqueous solutions over zinc oxide incorporated nanocellulose under visible light irradiation. Main Group Met. Chem. 43, 84–91 (2020). https://doi.org/10.1515/mgmc-2020-0009

    Article  CAS  Google Scholar 

  39. Devendra, B.K., Praveen, B.M., Tripathi, V.S., Nagaraju, G., Nagaraju, D.H., Nayana, K.O.: Highly corrosion resistant platinum–rhodium alloy coating and its photocatalytic activity. Inorg. Chem. Commun. 134, 109065 (2021). https://doi.org/10.1016/j.inoche.2021.109065

    Article  CAS  Google Scholar 

  40. Modi, S., Fulekar, M.H.: Synthesis and characterization of zinc oxide nanoparticles and zinc oxide/cellulose nanocrystals nanocomposite for photocatalytic degradation of methylene blue dye under solar light irradiation. Nanotechnol. Environ. Eng. 5, 18 (2020). https://doi.org/10.1007/s41204-020-00080-2

    Article  CAS  Google Scholar 

  41. Devendra, B.K., Praveen, B.M., Tripathi, V.S., Nagaraju, G., Nayana, K.O., Nagaraju, D.H.: Platinum coating on SS304: photocatalytic dye degradation application. Iran. J. Sci. Technol. Trans. A Sci. 46, 37–145 (2022). https://doi.org/10.1007/s40995-021-01250-w

    Article  Google Scholar 

  42. Devendra, B.K., Praveen, B.M., Tripathi, V.S., Nagaraju, G., Prasanna, B.M., Shashank, M.: Development of rhodium coatings by electrodeposition for photocatalytic dye. Vacuum 205, 111460 (2022). https://doi.org/10.1016/j.vacuum.2022.111460

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, Grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by PJK, PGK, BBE, SB, VSB and BKD The first draft of the manuscript was written by PJK and all authors commented on manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Prasannakumar Jammapura Kallappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallappa, P.J., Kalleshappa, P.G., Eshwarappa, B.B. et al. Synthesis of cellulose nanofibers from lignocellulosic materials and their photocatalytic dye degradation studies. Int Nano Lett 13, 261–272 (2023). https://doi.org/10.1007/s40089-023-00402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-023-00402-7

Keywords

Navigation