Skip to main content

Advertisement

Log in

The influence of geometric parameters of baffle on the flow and heat transfer of Al2O3/water nanofluid in a tube with rectangular baffle

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aim of the present work is to investigate the role of Al2O3/water nanofluid and the geometric parameters of flow in heat transfer, pressure drop and heat exchanger efficiency. By applying periodic conditions, the flow and heat transfer of Al2O3/water nanofluid inside a tube has been investigated at the presence of heat transfer enhancer and under the influence of constant wall temperature. The turbulent flow regime and Reynolds numbers are considered to be in the range of 2000–10,000. Computational fluid dynamics software has been applied to model the governing differential equations using baffles with heights of 2, 4 and 6 mm and pitchs p/d = 0.5, 1, 2 and nanofluid with volume fractions of 1 and 2. The results of numerical modeling show that using rectangular baffle inside the pipe increases heat transfer compared to a simple pipe. As can be seen, adding nanoparticles to the base fluid increases heat transfer and by increasing the volume percentage of the nanofluid, the Nusselt number and heat transfer also increase. Moreover, increasing the volume percentage of nanoparticles from 1 to 2% increases the thermal efficiency in the heat exchanger with and without baffle. As the Reynolds number increases, the heat efficiency coefficient of the baffleless heat exchanger decreases when the Reynolds number is more than 2000. However, in the heat exchanger with baffle, increasing the Reynolds number decreases the thermal efficiency initially and then, for the Reynolds number more than 3500, an increase in thermal efficiency is illustrated. The results of the present study can be used for cooling process and heat transfer in large-scale heat exchangers and integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

Cp :

Specific heat capacity (J/kg/k)

D :

Channel diameter (m)

f :

Friction factor

h :

Baffle height (m)

K :

Thermal conductivity cofficient (W/m2/K)

L :

Channel length (m)

\(\dot{m}\) :

Mass flow rate (kg/s)

Nu :

Nusselt number

p :

Baffle pitch (m)

Pr :

Prandtl number

q :

Heat transfer (w)

R :

Channel radius (m)

Re :

Reynolds number

t :

Channel thickness (m)

T :

Temperature (K)

u :

Velocity in x direction (m/s)

v :

Velocity in y direction (m/s)

W :

Baffle thickness (m)

X ,y :

Cartesian coodinates

\(\Delta\) P :

Pressure drop

\(\Delta\) T lm :

Logarithmic mean temperature difference

μ :

Kinematic viscosity (kg/s/m)

ρ :

Density (kg/m3)

τ :

Stress (Pa)

\(\eta\) :

Thermal efficiency coefficient

ϕ :

Nanoparticle volume fraction

ω :

Turbulence rate

bf :

Base fluid (water)

b :

Bulk

E :

Enhanced

i :

Unit vector

n :

Nanoparticle

nf :

Nanofluid

t :

Turbulence

w :

Channel wall

References

  1. Bergles, A.E.: Some perspectives on enhanced heat transfer, second-generation heat transfer technology. J. Heat Transf. 110, 1082–1096 (1998)

    Article  Google Scholar 

  2. Webb, R.L., Kim, N.H.: Principles of enhanced heat transfer. Taylor & Francis, Routledge (2006)

    Google Scholar 

  3. Zhai, Y.L., Xia, G.D., Liu, X.F., Li, Y.F.: Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis. Int. J. Heat Mass Transf. 68, 224–233 (2014)

    Article  Google Scholar 

  4. Choi, S.U.S.: Nanofluids: from vision to reality through research. J. Heat Transf. 131, 1–9 (2009)

    Article  CAS  Google Scholar 

  5. Mozaffari, N., Solaymani, S., Achour, S., Kulesza, S., Bramowicz, S., Nezafat, N.B., Ţălu, Ş, Mozaffari, N., Rezaee, S.: New insights into SnO2/Al2O3, Ni/Al2O3, and SnO2/Ni/Al2O3 composite films for CO adsorption: building a bridge between microstructures and adsorption properties. J. Phys. Chem. C 124(6), 3692–3701 (2020)

    Article  CAS  Google Scholar 

  6. Solaymani, S., Ţălu, Ş, Nezafat, N.B., Rezaee, S., Kenari, M.F.: Diamond nanocrystal thin films: case study on surface texture and power spectral density properties. AIP Adv. 10(4), 045206 (2020)

    Article  CAS  Google Scholar 

  7. Rezaee, S., Boochani, A., Majidiyan, M., Ghaderi, A., Solaymani, S., Naseri, M.: Elastic and optical properties of zinc-blende CrSb and its effective mass. Rare Met. 33(5), 615–621 (2014)

    Article  CAS  Google Scholar 

  8. Arman, A., Ghodselahi, T., Molamohammadi, M., Solaymani, S., Zahrabi, H., Ahmadpourian, A.: Microstructure and optical properties of Cu@ Ni nanoparticles embedded in aC: H. Prot. Met. Phys. Chem. Surf. 51, 575–578 (2015)

    Article  CAS  Google Scholar 

  9. Choi, S.U.S., Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. J. Heat Transf. 66, 99–105 (1995)

    Google Scholar 

  10. Khanafar, K., Vafai, K., Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two - dimensional cavity utilizing nanofluids. Int. J. Heat Mass Transfer. 46, 3639–3653 (2003)

    Article  CAS  Google Scholar 

  11. Oztop, H.F., Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow. 29, 1326–1336 (2008)

    Article  Google Scholar 

  12. Maiga, S.E.B., Palm, S.J., Nguyen, C.T., Roy, G., Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat. Fluid Flow 26, 530–546 (2005)

    Article  CAS  Google Scholar 

  13. Heris, S.Z., Esfahany, M.N., Etemad, SGh.: Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int. J. Heat Fluid Flow 28, 203–210 (2007)

    Article  CAS  Google Scholar 

  14. Ding, Y., Alias, H., Wen, D., Williams, R.A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT Nanofluids). Int. J. Heat Mass Transf. 49, 240–250 (2006)

    Article  CAS  Google Scholar 

  15. Akbari, O.A., Toghraie, D., Karimipour, A., Safaei, M.R., Goodarzi, M., Alipour, H., Dahari, M.: Investigation of rib’s height effect on heattransfer and flow parameters of laminar water–Al2O3 nanofluid in a rib-microchannel. Appl. Math. Comput. 290, 135–53 (2016)

    Google Scholar 

  16. Masuda H, Ebata, A., Teramae, K., Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles). 4, 227– 33(1993).

  17. Grimm A., Powdered aluminum-containing heat transfer fluid, German Patent DE 4131516 A1 1993

  18. Choi, S.U.S., Eastman, J.A.: U.S. Patent. 6, 221–275 (2001)

  19. Eastman, J.A., Choi, S.U.S., Li, S., Yu, W., Thomson, L.J.: Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticle. Appl. Phys. Lett. 78, 718–720 (2001)

    Article  CAS  Google Scholar 

  20. Philip, J., Laskar, J.M., Raj, B.: Magnetic field induced extinction of light in a suspension of Fe3O4 nanoparticle. Appl. Phys. Lett. 92, 615–632 (2008)

    Article  Google Scholar 

  21. Taofik, H., Nassan, S., Heris, Z., Noie, S.H.: A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluid in square cross-section duc. Int. Commun. Heat Mass Transf. 37, 924–928 (2010)

    Article  CAS  Google Scholar 

  22. Jang, S.P., Choi, S.U.S.: Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 431–468 (2014)

    Google Scholar 

  23. Anoop, K., Sadr, R., Yu, J., Kang, S., Jeon, S., Banerjee, D.: Experimental study of forced convective heat transfer of nanofluids in a microchannel. Int. Commun. Heat Mass Transf. 39, 1325–1330 (2012)

    Article  CAS  Google Scholar 

  24. Aly, W.I.A.: Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energy Convers. Manag. 79, 304–316 (2014)

    Article  CAS  Google Scholar 

  25. Sundar, S.L., Sharma, K.V.: Turbulent heat transfer and friction factor of Al2O3 Nanofluid in circular tube with twisted tape inserts. Int. J. Heat Mass Transf. 53, 1409–1416 (2010)

    Article  CAS  Google Scholar 

  26. Noie, S.H., Zeinali, S., Heris, M., Kahani, S.M.: Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon. Int. J. Heat Fluid Flow 30, 700–705 (2009)

    Article  CAS  Google Scholar 

  27. Abu-Nada, E.: Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection. Int. J. Heat Fluid Flow. 30, 679–690 (2009)

    Article  CAS  Google Scholar 

  28. Jie, L., Clement, K.: Thermal performance of nanofluid flow in microchannels. Int. J. Heat Fluid Flow. 29, 1221–1232 (2008)

    Article  CAS  Google Scholar 

  29. Fotukian, S.M., Nasr Esfahany, M.: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int. Commun. Heat Mass Transf. 37, 214–219 (2010)

    Article  CAS  Google Scholar 

  30. Ahmed, M.A., Shuaib, N.A., Yusoff, M.Z.: Numerical investigations on the heat transfer enhancement in a wavy channel using nanofluid. Int. J. Heat Mass Transf. 55, 21–23 (2012)

    Article  Google Scholar 

  31. Boonloi, A., Jedsadaratanachai, W.: Turbulent forced convection in a heat exchanger square channel with wavy-ribs vortex generator. Chin. J. Chem. Eng. 23, 1256–1265 (2015)

    Article  CAS  Google Scholar 

  32. Chai, L., Xia, G.D., Wang, H.S.: Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. App. Therm. Eng. 92, 32–41 (2016)

    Article  Google Scholar 

  33. Gawande, V.B.: Experimental and Cfd investigation of convection heat transfer in solar air heater with reverse L-shaped ribs. Sol. Energy 131, 275–295 (2016)

    Article  Google Scholar 

  34. Jin, D.: Numerical investigation of heat transfer and fluid flow in a solar air heater duct with multi V-shaped ribs on the absorber plate. Energy 89, 178–190 (2015)

    Article  Google Scholar 

  35. Kumar, A., Kim, M.H.: Thermohydraulic performance of rectangular ducts with different multiple V-rib roughness shapes: a comprehensive review and comparative study. Renew. Sustain. Energy Rev. 54, 635–652 (2016)

    Article  Google Scholar 

  36. Kumar, A., Kim, M.H.: Heat transfer and fluid flow characteristics in air duct with various V-pattern rib roughness on the heated plate: a comparative study. Energy 103, 75–85 (2016)

    Article  Google Scholar 

  37. Kumar, R.: Heat transfer enhancement in solar air channel with broken multiple V-type baffle. Case Studies Therm. Eng. 8, 187–197 (2016)

    Article  Google Scholar 

  38. Xia, G., Zhai, Y., Cui, Z.: Numerical investigation of thermal enhancement in a micro heat sink with fan-shaped reentrant cavities and internal ribs. App. Therm. Energy. 58, 52–60 (2013)

    Article  Google Scholar 

  39. Wang, X.-D., Bin, A., Xu, J.L.: Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions. Energy Convers. Manag. 65, 528–538 (2013)

    Article  CAS  Google Scholar 

  40. Vinodhan, V.L., Rajan, K.S.: Computational analysis of new microchannel heat sink configurations. Energy Convers. Manag. 86, 595–604 (2014)

    Article  Google Scholar 

  41. Gholami, M.R., Ali Akbari, O., Marzban, A., Toghraie, D., Ahmadi Sheikh Shabani, G.H., Zarringhalam, M.: The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J. Therm. Analys. Calorime. 134, 1628–1635 (2018)

    Google Scholar 

  42. Behnampour, A., Ali Akbari, O., Safaei, M.R., Ghavami, M., Marzban, A., Sheikh Shabani, G.H., Zarringhalam, M., Mashayekhi, R.: Analysis of heat transfer and nanofluid fluid flow in microchannels with rectangular and triangular shaped ribs. Int. J. Heat Mass Transf. 91, 15–31 (2017)

    CAS  Google Scholar 

  43. Heydari, M., Toghraei, D., ALI Akbari, O.: Rapezoidal, The effect of semi-attached and offset mid-truncated ribs and Water/TiO2 nanofluid on flow and heat transfer properties in a triangular microchannel. Int. J. Heat Mass Transf. 2, 140–150 (2017)

    Google Scholar 

  44. Rezaei, O., Ali Akbari, O., Marzban, A., Toghraie, D., Pourfattah, F., Mashayekhi, R.: The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Int. J. Heat Mass Transf. 93, 179–189 (2017)

    CAS  Google Scholar 

  45. Khodabandeh, E., Bahiraei, M., Mashayekhi, R., Talebjedi, B., Toghraie, D.: Thermal performance of Ag–water nanofluid in tube equipped with novel conical strip inserts using two-phase method: geometry effects and particle migration considerations. Powder Tech. 338, 87–100 (2018)

    Article  CAS  Google Scholar 

  46. Rezaei, O., Akbari, O.A., Marzban, A., Toghraie, D., Pourfattah, F., Mashayekhi, R.: The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Phys. E. 93, 179–189 (2017)

    Article  CAS  Google Scholar 

  47. Kaitpaiboon, K., Nanan, V.K., Eiamsa-ard, S.: Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators. Int. Commun. Heat Mass Transf. 37, 568–574 (2010)

    Article  Google Scholar 

  48. Sahamifar, S., Kowsary, F., Mazlaghani, M.H.: Generalized optimization of cross-flow staggered tube banks using a subscale model. Int. Commun. Heat Mass Transf. 105, 46–57 (2015)

    Article  Google Scholar 

  49. Nejad, S. M.: Fundamentals of Turbulent Flows and Turbulence Modeling. Danesh Negar Pub. In Persian (2009)

  50. Menter, F.R.: Two- equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  51. Incropera, F. P., Witt, P. D., Bergman, T.L., Lavine, A.S.: Fund. Heat Mass Transf. John-Wiley & Sons, 201–278 (1998).

  52. Heyhat, M., Kowsary, F., Rashidi, A., Momenpour, M., Amrollahi, A.: Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp. Therm. Fluid Sci. 44, 483–489 (2013)

    Article  CAS  Google Scholar 

  53. Webb, R.L.: Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design. Int. J. Heat Mass Transf. 24, 715–726 (2012)

    Article  Google Scholar 

  54. Bergman, T.L., Incropera, F.P., Lavine, A.S.: Fundamentals of heat and mass transfer. John Wiley & Sons, Hoboken (2011)

    Google Scholar 

  55. Pak, B.C., Cho, Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J. 11, 151–170 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Kowsary.

Ethics declarations

Conflict of interest

The authors report no conflict of interests. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobadi, B., Kowsary, F. & Veysi, F. The influence of geometric parameters of baffle on the flow and heat transfer of Al2O3/water nanofluid in a tube with rectangular baffle. Int Nano Lett 11, 395–404 (2021). https://doi.org/10.1007/s40089-021-00350-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00350-0

Keywords

Navigation