Skip to main content

Advertisement

Log in

Myco-synthesized silver and titanium oxide nanoparticles as seed priming agents to promote seed germination and seedling growth of Solanum lycopersicum: a comparative study

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Nanoparticles (NPs) are rapidly adopted in agriculture to improve plant growth and development. Nano-priming is one such strategy that utilizes NPs to enhance seed germination, seedling vigor, and improve crop resilience. This study is the first attempt to compare the effects of silver and titanium oxide NPs (TcAgNPs and TcTiO2NPs) myco-synthesized using Trichoderma citrinoviride extract as seed priming agents. Different concentrations of TcAgNPs and TcTiO2NPs (25, 50, 100, 200, and 400 µg/mL) were tested for priming Solanum lycopersicum seeds, and the effect on seed germination, seedling growth, chlorophyll, antioxidant mechanism, and carotenoid content were evaluated. The study revealed that lower concentrations of TcTiONPs (25 and 50 µg/mL) had a positive effect on seed germination and seedling vigor. However, unlike TcTiONPs, lower concentrations of TcAgNPs reduced the seed germination, seedling vigor, and showed an increase in the activities of antioxidant enzymes such as catalase, superoxide dismutase, and peroxidase. The differences in the response for both NPs can be attributes to their surface charge, and concentration used. Overall, myco-synthesis of TcAgNPs and TcTiONPs can work as a green route to reduce the dependence on chemical mediated production of NPs for seed priming with the potential to improve the germination and development of tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dutta, P.: Seed priming: new vistas and contemporary perspectives. In: Rakshit A, Singh HG (eds) Advances in Seed Priming. Springer, Singapore, pp 3–22 (2018)

  2. Mauch-Mani, B., Baccelli, I., Luna, E., Flors, V.: Defense priming: an adaptive part of induced resistance. Annu. Rev. Plant Biol. 68, 485–512 (2017)

    Article  CAS  Google Scholar 

  3. do Espirito Santo Pereira, A., Caixeta Oliveira, H., FernandesFraceto, L., Santaella, C.: Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials 11(2), 267 (2021)

    Article  CAS  Google Scholar 

  4. Moghadam, N.K., Hatami, M., Rezaei, S., Bayat, M., Lajayer, B.A.: Induction of plant defense machinery against nanomaterials exposure. In: Ghorbanpour M, Wani SH (eds) Advances in Phytonanotechnology. Elsevier, London, pp 241–263 (2019)

  5. Mahakham, W., Theerakulpisut, P., Maensiri, S., Phumying, S., Sarmah, A.K.: Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci. Total Environ. 573, 1089–1102 (2016)

    Article  CAS  Google Scholar 

  6. Anand, K.V., Anugraga, A., Kannan, M., Singaravelu, G., Govindaraju, K.: Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L). Mater.Lett. 271, 127792 (2020)

    Article  Google Scholar 

  7. Azmath, P., Baker, S., Rakshith, D., Satish, S.: Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm. J. 24(2), 140–146 (2016)

    Article  Google Scholar 

  8. Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, S., Galdiero, M.: Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomed. 8, 4303 (2013)

    Google Scholar 

  9. Haji Basheerudeen, M.A., Mushtaq, S.A., Soundhararajan, R., Nachimuthu, S.K., Srinivasan, H.: Marine endophytic fungi mediated Silver nanoparticles and their application in plant growth promotion in Vigna radiata L. Int. J. Nano Dimens, 12(1), 1–10 (2021)

    Google Scholar 

  10. Arya, S., Sonawane, H., Math, S., Tambade, P., Chaskar, M., Shinde, D.: Biogenic titanium nanoparticles (TiO 2 NPs) from Tricoderma citrinoviride extract: synthesis, characterization and antibacterial activity against extremely drug-resistant Pseudomonas aeruginosa. Int. Nano Lett. 11, 1–8 (2020)

    Google Scholar 

  11. Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., Rai, M.: Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. Nanotechnol. Biol. Med. 5(4), 382–386 (2009)

    Article  CAS  Google Scholar 

  12. Beauchamp, C., Fridovich, I.: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44(1), 276–287 (1971)

    Article  CAS  Google Scholar 

  13. Stewart, R.R., Bewley, J.D.: Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 65(2), 245–248 (1980)

    Article  CAS  Google Scholar 

  14. Shangari, N., O’Brien, P.J.: Catalase activity assays. Curr. Protoc. Toxicol. 27(1), 7.7.1-7.7.16 (2006)

    Article  Google Scholar 

  15. Goldblith, S.A., Proctor, B.E.: Photometric determination of catalase activity. J. Biol. Chem. 187(2), 705–709 (1950)

    Article  CAS  Google Scholar 

  16. Hadwan, M.H.: Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 19(1), 1–8 (2018)

    Article  Google Scholar 

  17. Lurie, S., Fallik, E., Handros, A., Shapira, R.: The possible involvement of peroxidase in resistance to Botrytis cinerea in heat treated tomato fruit. Physiol. Mol. Plant Pathol. 50(3), 141–149 (1997)

    Article  CAS  Google Scholar 

  18. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72(1–2), 248–254 (1976)

    Article  CAS  Google Scholar 

  19. Bates, L.S., Waldren, R.P., Teare, I.: Rapid determination of free proline for water-stress studies. Plant Soil 39(1), 205–207 (1973)

    Article  CAS  Google Scholar 

  20. Pérez-Patricio, M., Camas-Anzueto, J.L., Sanchez-Alegría, A., Aguilar-González, A., Gutiérrez-Miceli, F., Escobar-Gómez, E., Voisin, Y., Rios-Rojas, C., Grajales-Coutiño, R.: Optical method for estimating the chlorophyll contents in plant leaves. Sensors 18(2), 650 (2018)

    Article  Google Scholar 

  21. Braniša, J., Jenisová, Z., Porubská, M., Jomová, K., Valko, M.: Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. J. Microbiol. Biotechnol. Food Sci. 2020, 61–64 (2020)

    Google Scholar 

  22. Vigneshwaran, N., Ashtaputre, N., Varadarajan, P., Nachane, R., Paralikar, K., Balasubramanya, R.: Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 61(6), 1413–1418 (2007)

    Article  CAS  Google Scholar 

  23. Velhal, S.G., Kulkarni, S., Latpate, R.: Fungal mediated silver nanoparticle synthesis using robust experimental design and its application in cotton fabric. Int. Nano Lett. 6(4), 257–264 (2016)

    Article  CAS  Google Scholar 

  24. Khalir, W.K.A.W.M., Shameli, K., Jazayeri, S.D., Othman, N.A., Jusoh, N.W.C., Hassan, N.M.: Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Front. Chem. 8, 620 (2020)

  25. Almutairi, Z.M.: Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination. Int. J. Agric. Biol. 18(2), 449-457 (2016)

  26. Haghighi, M., da Silva, J.A.T.: The effect of N-TiO 2 on tomato, onion, and radish seed germination. J. Crop. Sci. Biotechnol. 17(4), 221–227 (2014)

    Article  Google Scholar 

  27. Çekiç, F.Ö., Ekinci, S., İnal, M.S., Özakça, D.: Silver nanoparticles induced genotoxicity and oxidative stress in tomato plants. Turk. J. Biol. 41(5), 700–707 (2017)

    Article  Google Scholar 

  28. Nair, P.M.G., Chung, I.M.: Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.). Acta Physiolog. Plant. 37(1), 1719 (2015)

    Article  Google Scholar 

  29. Nair, P.M.G., Chung, I.M.: Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112, 105–113 (2014)

    Article  CAS  Google Scholar 

  30. Qian, H., Peng, X., Han, X., Ren, J., Sun, L., Fu, Z.: Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 25(9), 1947–1956 (2013)

    Article  CAS  Google Scholar 

  31. Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., Lee, E.J.: Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol. Environ. Saf. 93, 60–67 (2013)

    Article  CAS  Google Scholar 

  32. Raliya, R., Nair, R., Chavalmane, S., Wang, W.-N., Biswas, P.: Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7(12), 1584–1594 (2015)

    Article  CAS  Google Scholar 

  33. Sheteiwy, M.S., Dong, Q., An, J., Song, W., Guan, Y., He, F., Huang, Y., Hu, J.: Regulation of ZnO nanoparticles-induced physiological and molecular changes by seed priming with humic acid in Oryza sativa seedlings. Plant Growth Regul. 83(1), 27–41 (2017)

    Article  CAS  Google Scholar 

  34. Khan, I., Raza, M.A., Awan, S.A., Shah, G.A., Rizwan, M., Ali, B., Tariq, R., Hassan, M.J., Alyemeni, M.N., Brestic, M.: Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): the oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol. Biochem. 156, 221–232 (2020)

    Article  CAS  Google Scholar 

  35. Shah, T., Latif, S., Saeed, F., Ali, I., Ullah, S., Alsahli, A.A., Jan, S., Ahmad, P.: Seed priming with titanium dioxide nanoparticles enhances seed vigor, leaf water status, and antioxidant enzyme activities in maize (Zea mays L.) under salinity stress. J. King Saud Univ.-Sci. 33(1), 101207 (2021)

    Article  Google Scholar 

  36. Khan, J., Chandra, J., Xalxo, R., Korram, J., Satnami, M.L., Keshavkant, S.: Amelioration of ageing associated alterations and oxidative inequity in seeds of Cicer arietinum by silver nanoparticles. J. Plant Growth Regul. 40, 1–11 (2020)

  37. Telfer, A.: Singlet oxygen production by PSII under light stress: mechanism, detection and the protective role of β-carotene. Plant Cell Physiol. 55(7), 1216–1223 (2014)

    Article  CAS  Google Scholar 

  38. Ke, Q., Kang, L., Kim, H.S., Xie, T., Liu, C., Ji, C.Y., Kim, S.H., Park, W.S., Ahn, M.-J., Wang, S.: Down-regulation of lycopene ε-cyclase expression in transgenic sweetpotato plants increases the carotenoid content and tolerance to abiotic stress. Plant Sci. 281, 52–60 (2019)

    Article  CAS  Google Scholar 

  39. Wang, X., Li, Q., Pei, Z., Wang, S.: Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol. Plant. 62(4), 801–808 (2018)

    Article  CAS  Google Scholar 

  40. Zhu, Z.-J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O.R., Rotello, V.M., Xing, B., Vachet, R.W.: Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 46(22), 12391–12398 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis, investigation, writing—original draft preparation, writing—review and editing—H. S., S. A., S. M. and D. S.; supervision—S. A. and D. S. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hiralal Sonawane or Sagar Arya.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonawane, H., Arya, S., Math, S. et al. Myco-synthesized silver and titanium oxide nanoparticles as seed priming agents to promote seed germination and seedling growth of Solanum lycopersicum: a comparative study. Int Nano Lett 11, 371–379 (2021). https://doi.org/10.1007/s40089-021-00346-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00346-w

Keywords

Navigation