Skip to main content
Log in

Facile synthesis and characterization of TiO2 nanoparticles: X-ray peak profile analysis using Williamson–Hall and Debye–Scherrer methods

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

In this study, TiO2 nanoparticles were synthesized by a sol–gel method involving the interaction of the titanium isopropoxide precursor and sodium hydroxide followed by calcination at a temperature of 450 °C. The effects of stirring time and solution pH on the morphology, phase types and crystallite sizes were investigated. The prepared TiO2 nanoparticles were characterized using X-ray diffraction analysis (XRD), high resolution scanning electron microscopy (HRSEM), high-resolution transmission electron microscopy (HRTEM), selective area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The HRSEM/HRTEM micrograph showed the formation of well distinct TiO2 nanoparticles with spherical shapes except at pH 2. FTIR spectroscopy showed the presence of the Ti–O stretching modes and Ti–O–Ti vibration modes in the samples. Crystallite size and lattice strain at peak broadening of TiO2 nanoparticles were studied using Williamson–Hall analysis and Scherrer’s equation. It was found that W–H crystallite sizes were significantly different from the sizes obtained from Scherrer’s equation at basic medium (pH 8–12) under the applied conditions of stirring time and solution pH for TiO2 nanoparticles. XRD pattern demonstrated the formation of pure anatase phase of TiO2 irrespective of the solution pH and stirring time. XPS analysis showed the existence of the Ti 2p orbital in the oxidation states of + 4. The study demonstrated that stirring time and solution pH determined the crystallite sizes and not the phase types.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ansari, F., Soofivand, F., Salavati-Niasari, M.: Utilizing maleic acid as a novel fuel for synthesis of PbFe12O19 nanoceramics via sol–gel auto-combustion route. Mater. Charact. 103, 11 (2015)

    Article  CAS  Google Scholar 

  2. Sabry, R.S., Al-Haidarie, Y.K., Kudhier, M.A.: Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by sol-gel method. J. Sol-Gel Sci. Technol 78(2), 299 (2016)

    Article  CAS  Google Scholar 

  3. Haider, A.J., Al-Anbari, R.H., Kadhim, G.R., Salame, C.T.: Exploring potential environmental application of TiO2 nanoparticles. Energy Procedia 119, 332–345 (2017)

    Article  CAS  Google Scholar 

  4. Tijani, J.O., Fatoba, O.O., Totito, T.C., Roos, W.D., Petrik, L.F.: Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method. Carbon Lett. 22, 48 (2017)

    Google Scholar 

  5. Ebrahimi, H.R., Parish, M., Amiri, G.R., Bahraminejad, B., Fatahian, S.: Synthesis, characterization and gas sensitivity investigation of NiO.5ZnO. 5Fe2O4 nanoparticles. J. Mag. Mag. Mater 414, 55–58 (2016)

    Article  CAS  Google Scholar 

  6. Ebrahimi, H.R., Usefi, H., Emami, H., Amiri, G.R.: Synthesis, characterization, and sensing performance investigation of copper cadmium ferrite nanoparticles. IEEE Trans. Magn. 54(10), 1–5 (2018)

    Article  Google Scholar 

  7. Budarz, J.F., Cooper, E.M., Gardner, C., Hodzic, E., Ferguson, P.L., Gunsch, C.K., Wiesner, M.R.: Chlorpyrifos degradation via photoreactive TiO2 nanoparticles: assessing the impact of a multi-component degradation scenario. J. Hazard. Mater. 372, 61–68 (2019)

    Article  CAS  Google Scholar 

  8. Eskandari, Z., Talaiekhozani, A., Talaie, M.R., Banisharif, F.: Enhancing ferrate (VI) oxidation process to remove blue 203 from wastewater utilizing MgO nanoparticles. J. Environ. Manag. 231, 297–307 (2019)

    Article  CAS  Google Scholar 

  9. Li, B., Zhang, X., Dou, J., Hu, C.: Facile synthesis of pseudocapacitive Mn3O4 nanoparticles for high-performance supercapacitor. Ceram. Inter 45(13), 16297–16304 (2019)

    Article  CAS  Google Scholar 

  10. Ebrahimi, H.R., Modrek, M., Joohari, S.: Photodecolorization of direct yellow 86 (2- Solamine) by using zinc oxide nanosized deposited on glass beads. Indian J. Sci. Technol. 5(1), 1828–1830 (2012)

    Article  CAS  Google Scholar 

  11. Ebrahimi, H.R., Modrek, M.: Photocatalytic decomposition of methyl red dye by using nanosized zinc oxide deposited on glass beads in various pH and various atmosphere. J. Chem. 2013, 1–4 (2013)

    Article  CAS  Google Scholar 

  12. Ghowsi, K., Ebrahimi, H.R., Kazemipour-Baravati, F., Bagheri, H.: Synthesize of ZnO/NPs and investigation of its effect in reduction of electrochemical charge transfer resistance; application of it for photodecomposition of calcon (CI 15705) dye in various media. Inter J. Electrochem. Sci. 9(4), 1738–1746 (2014)

    Google Scholar 

  13. Ebrahimi, H.R., Modrek, M., Joohari, S.: Photodegradation of methyl orange dye by using zinc oxide nano-sized catalysts on glass granules at various ph values and different atmosphere. Fresenius Environ. Bull. 23(5), 1155–1158 (2014)

    CAS  Google Scholar 

  14. Zhong, W., Tu, W., Feng, S., Xu, A.: Photocatalytic H2 evolution on CdS nanoparticles by loading FeSe nanorods as co-catalyst under visible light irradiation. J. Alloys Compd. 772, 669–674 (2019)

    Article  CAS  Google Scholar 

  15. Gopala, K.V., Purushothaman, A., Elango, P.: A study of the physical properties and gas-sensing performance of TiO2 nanofilms: Automated nebulizer spray pyrolysis method (ANSP). Phys. Status Solidi 214(10), 1–9 (2017)

    Google Scholar 

  16. Rao, B.G., Mukherjee, D., Reddy, B.M.: Novel approaches for the preparation of nanoparticles. In: Nanostructures for Novel Therapy, Synthesis Characterization and Applications. Micro and Nano Technology, pp. 1–36. Elsevier, Amsterdam (2017)

    Google Scholar 

  17. Sofyan, N., Ridhova, A., Yuwono, A.H., Udhiarto, A.: Preparation of anatase TiO2 nanoparticles using low hydrothermal temperature for dye-sensitized solar cell. IOP Conf. Ser. Mater. Sci. Eng. 316, 0120551 (2018)

    Article  Google Scholar 

  18. Yudoyono, G., Ichzan, N., Zharvan, V., Daniyati, R., Santoso, H., Indarto, B., Pramono, Y.H., Zainuri, M., Darminto, H.: Effect of calcination temperature on the photocatalytic activity of TiO2 powders prepared by co-precipitation of TiCl3. AIP Conf. Proc. 1725, 1–7 (2020)

    Google Scholar 

  19. De Filpo, G., Pantuso, E., Armentano, K., Formoso, P., Di Profio, G., Poerio, T., Fontananova Meringolo, E.C., Mashin, A.I., Nicoletta, F.P.: Chemical vapor deposition of photocatalyst nanoparticles on PVDF membranes for advanced oxidation processes. Membranes 8, 35 (2018)

    Article  CAS  Google Scholar 

  20. Aziz, W.J., Ali, S.Q., Jassim, N.Z.: Production TiO2 nanoparticles using laser ablation in ethanol. SILICON 10(5), 2101–2107 (2018)

    Article  CAS  Google Scholar 

  21. Torabmostaedi, H., Zhang, T.: Numerical simulation of TiO2 nanoparticle synthesis by flame spray pyrolysis. Powder Technol. 329, 426–433 (2018)

    Article  CAS  Google Scholar 

  22. Aramwit, C., Yu, L.D., Gregoratti, L., Choopons, S.: Characterizations and DSSC efficiency test of TiO2 nano-films formed by filtered cathodic vacuum arc deposition. Int. J. Nanotechnol. 14(1), 481–495 (2017)

    CAS  Google Scholar 

  23. Kang, O.L., Ahmad, A., Rana, U.A., Hassan, N.H.: Sol-gel titanium dioxide nanoparticles: Preparation and structural characterization. J. Nanotechnol. (2016). https://doi.org/10.1155/2016/5375939

    Article  Google Scholar 

  24. Nateq, M.H., Ceccato, R.: Sol-gel synthesis of TiO2 nanocrystalline particles with enhanced surface area through the reverse micelle approach. Adv. Mater. Sci. Eng. 12(11), 1744 (2019)

    CAS  Google Scholar 

  25. Selman, A.M., Hassan, Z., Husham, Z.: Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values. Measurement 56, 155–162 (2014)

    Article  Google Scholar 

  26. Xue, J., Shen, Q., Yang, F., Liang, W., Liu, X.: Investigation on the influence of pH on the structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays. J. Alloys Compd. 607, 163–168 (2014)

    Article  CAS  Google Scholar 

  27. Mohite, V.S., Mahadik, M.A., Kumbhar, S.S., Kothavale, V.P., Moholkar, A.V., Rajpure, K.Y., Bhosale, C.H.: Photo-electrocatalytic degradation of benzoic acid using sprayed TiO2 thin films. Ceram. Int. 41, 2202–2208 (2015)

    Article  CAS  Google Scholar 

  28. Tsega, M., Dejene, F.B.: Influence of acidic pH on the formulation of TiO2 nanocrystalline powders with enhanced photoluminescence property. Heliyon 3, 1–16 (2017)

    Article  Google Scholar 

  29. Shehap, A.M., Akil, D.S.: Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. Inter. J. Nanoelectron. Mater. 9, 17–36 (2016)

    Google Scholar 

  30. Priyanka, K.P., Sheena, P.A., Sabu, N.A., George, T., Balakrishna, K.M., Varghese, T.: Characterization of nanophase TiO2 synthesized by sol-gel method. Indian J. Phys. 88(7), 657–663 (2014)

    Article  CAS  Google Scholar 

  31. Kibasomba, P.M., Dhlamini, S., Maaza, M., Liu, C.P., Rashad, M.M., Rayan, D.A., Mwakikunga, B.W.: Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results Phys. 9, 628–635 (2018)

    Article  Google Scholar 

  32. Singh, P.K., Mukherjee, S., Ghosh, C.K., Maitra, S.: Influence of precursor type on structural, morphological, dielectric and magnetic properties of TiO2 nanoparticles. Cerâmica 63, 549–556 (2017)

    Article  CAS  Google Scholar 

  33. Singh, P.K., Mukherjee, S., Ghosh, C.K., Maitra, S.: Spectroscopic investigation on sol gel derived TiO2 nanoparticles. J. Adv. Nanomater. 2(3), 160–168 (2017)

    Article  Google Scholar 

  34. Fu, R., Yin, Q., Guo, X., Tong, X., Wang, X.: Evolution of mesoporous TiO2 during fast sol-gel synthesis. Res. Chem. Intermed. 43(11), 6433–6445 (2017)

    Article  CAS  Google Scholar 

  35. Morales, J., Maldonado, A., de La, M., Olvera. L.: 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) Mexico City, Mexico (2013)

  36. Islam, S.Z., Nagpure, S., Kim, D.Y., Rankin, S.E.: Synthesis and catalytic applications of non-metal doped mesoporous titania. Inorganics 5(15), 1–43 (2017)

    Google Scholar 

  37. Pavel, K., Radovan, K.: The effect of calcination on the structure of inorganic tio2 nanofiber, Oct 14th–16th 2015, Brno, Czech Republic, EU. NanoCon (2015)

  38. El-Mekkawi, D.M., Labib, A.A., Mousa, H.A., Galal, H.R., Mohamed, W.A.: A preparation and characterization of nano titanium dioxide photocatalysts via sol-gel method over narrow ranges of varying parameters. Orient. J. Chem. 33(1), 41–51 (2017)

    Article  CAS  Google Scholar 

  39. Kumar, S.G., Rao, K.K.: Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process. Nanoscale 6(20), 11574–11632 (2014)

    Article  CAS  Google Scholar 

  40. Mirjalili, F., Manafi, S., Farahbakhsh, I.: Preparation and characterization of TiO2 nanoparticles prepared by sol-gel method. Adv. Ceram. Prog. 3(3), 38–47 (2017)

    Google Scholar 

  41. Hajjaji, W., Andrejkovičová, S., Pullar, R.C., Tobaldi, D.M., Lopez-galindo, A., Jammousi, F., Rocha, F., Labrincha, J.A.: Effective removal of anionic and cationic dyes by kaolinite and TiO2/kaolinite composites. Clay Miner. 51, 19–27 (2016)

    Article  CAS  Google Scholar 

  42. Nyamukamba, P., Okoh, O., Mungondori, H., Taziwa, R., Zinya, S.: Synthetic methods for titanium dioxide nanoparticles: a review. In: Yang, D. (ed.) Titanium Dioxide-Material for a Sustainable Environment, pp. 151–1755. InTech, London (2018)

    Google Scholar 

  43. Victoria, D.B., Hernández, P.I., Garibay, F.V., Díaz, B.A.L., Suárez, P.R., Rivera, O.J.N., Luna, P.R., Melo, M.D.V., González, R.L.: Atomic-scale investigation on the evolution of Tio2-anatase prepared by a sonochemical route and treated with NaOH. Materials 13(3), 685 (2020)

    Article  CAS  Google Scholar 

  44. Bitaraf, M., Ghazi, M.E., Izadifard, M.: Studying structural and optical properties of TiO2-SnO2 core-shell synthesized by sol-gel route. Cryst. Res. Technol. 55(3), 1900145 (2020)

    Article  CAS  Google Scholar 

  45. El-Nagar, H., Abd El-sadek, M.S., Ezzeldien, M.: Structural analysis, optical and mechanical properties of Ti xZr1−xO2 nanoparticles synthesized by modified co-precipitation route. Appl. Phys. A 126(2), 126 (2020)

    Article  CAS  Google Scholar 

  46. Raguram, T., Rajni, K.S.: Effects of varying the soaking duration of Eosin Blue sensitized TiO2 photoanodes for dye-sensitized solar cells. Optik 204, 164169 (2020)

    Article  CAS  Google Scholar 

  47. Rajan, M.T., Hassan, E.: Laser plasma induced TiO2 nanoparticle synthesis in water and particle characterization. IEEE Access 7, 56556–56563 (2019)

    Article  Google Scholar 

  48. Gao, Z., Wu, Z., Chen, X., Yang, X.: Effective synthesis of nanoscale anatase TiO2 single crystals using activated carbon template to enhance the photodegradation of crystal violet. Appl. Organomet. Chem. 33(3), e4664 (2019)

    Article  CAS  Google Scholar 

  49. Ibrahim, I., Kaltzoglou, A., Athanasekou, C., Katsaros, F., Devlin, E., Kontos, A.G., Ioannidis, N., Perraki, M., Tsakiridis, P., Sygellou, L., Antoniadou, M.: Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light. Chem. Eng. J. 381, 122730 (2020)

    Article  CAS  Google Scholar 

  50. Komaraiah, D., Radha, E., Kalarikkal, N., Sivakumar, J., Reddy, M.R., Sayanna, R.: Structural, optical and photoluminescence studies of sol-gel synthesized pure and iron doped TiO2 photocatalysts. Ceram. Inter. 45(18), 25060–25068 (2019)

    Article  CAS  Google Scholar 

  51. Nabi, G., Raza, W., Tahir, M.B.: Green synthesis of TiO2 nanoparticle using cinnamon powder extract and the study of optical properties. J Inorg. Organomet. Polym. Mater. 30, 1425 (2020)

    Article  CAS  Google Scholar 

  52. Ndabankulu, V.O., Maddila, S., Jonnalagadda, S.B.: Synthesis of lanthanide-doped TiO2 nanoparticles and their photocatalytic activity under visible light. Canad. J. Chem. 97(9), 672–681 (2019)

    Article  CAS  Google Scholar 

  53. Azizi-Lalabadi, M., Ehsani, A., Divband, B., Alizadeh-Sani, M.: Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  54. Siliveri, S., Chirra, S., Tyagi, C., Gandamalla, A., Adepu, A.K., Goskula, S., Gujjula, S.R., Venkatathri, N.: New porous high surface area, TiO2 Anatase/SAPO-35 mild brønsted acidic nanocomposite: Synthesis, characterization and studies on it’s enhanced photocatalytic activity. ChemistrySelect 4(31), 9135–9142 (2019)

    Article  CAS  Google Scholar 

  55. Venkatachalam, P., Kalaivani, T., Krishnakumar, N.: Erbium doped anatase TiO2 nanoparticles for photovoltaic applications. Opt. Quantum Electron. 51(9), 315 (2019)

    Article  CAS  Google Scholar 

  56. Wu, Y., Fu, Y., Zhang, L., Ren, Y., Chen, X., Yue, B., He, H.: Study of oxygen vacancies on different facets of anatase TiO2. Chin. J. Chem. 37(9), 922–928 (2019)

    Article  CAS  Google Scholar 

  57. Soni, H., Kumar, J.N., Patel, K., Kumar, R.N.: Photocatalytic decoloration of three commercial dyes in aqueous phase and industrial effluents using TiO2 nanoparticles. Des. Water Treat. 57(14), 6355–6364 (2016)

    Article  CAS  Google Scholar 

  58. León, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P., Orihuela, P.: A FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 7(1), 49 (2017)

    Article  CAS  Google Scholar 

  59. Liu, X., Xu, L., Huang, Y., Qin, C., Qin, L., Seo, H.J.: Improved photochemical properties of Aurivillius Bi5Ti3FeO15 with partial substitution of Ti4+ with Fe3+. Ceram. Inter. 43(15), 1237–1238 (2017)

    Article  Google Scholar 

  60. Krishnan, P., Liu, M., Itty, P.A., Liu, Z., Rheinheimer, V., Zhang, M.H., Monteiro, P.J.M., Yu, L.E.: Characterization of photocatalytic TiO2 powder under varied environments using near ambient pressure X-ray photoelectron spectroscopy. Sci. Rep. 7(1), 1 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Tertiary Education Trust Fund (TETFund) of Nigeria under a grant number TETFUND/FUTMINNA/2017/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mustapha.

Ethics declarations

Conflict of interest

Authors have declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustapha, S., Tijani, J.O., Ndamitso, M.M. et al. Facile synthesis and characterization of TiO2 nanoparticles: X-ray peak profile analysis using Williamson–Hall and Debye–Scherrer methods. Int Nano Lett 11, 241–261 (2021). https://doi.org/10.1007/s40089-021-00338-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00338-w

Keywords

Navigation