Skip to main content

Advertisement

Log in

Promise of gold nanomaterials as a lung cancer theranostic agent: a systematic review

  • Review
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Lung cancer is considered to be the second most prevalent form of cancer in the world and is associated with high mortality rates. Early diagnosis and targeted therapies for lung cancer can significantly extend patient survival. However, traditional strategies for lung cancer diagnosis lack sensitivity and selectivity. Additionally, available conventional drugs are losing their therapeutic potential due to side effects and the development of drug resistance. To overcome these drawbacks, there is an urgency to develop new potent theranostic agents to detect and combat cancer at an early stage. Recently, intensive progress has been made in the development and biomedical application of nanomaterials in cancer diagnosis, detection, and treatment. Gold nanomaterials (GNMs) have drawn considerable attention as a nano-theranostic agent due to their unique and tunable physical features. Therefore, this review aims to systematically analyze the efficiency of GNMs as a lung cancer theranostic agent. Published articles related to the study were selected from three popular electronic online databases including PubMed, Google Scholar, and Web of Science. Studied articles (n = 61) demonstrated that GNMs modified with photosensitive agents, miRNA, antibodies, peptides, conventional chemotherapeutic drugs, and other biomolecules improved the efficacy and efficiency of traditional diagnostic and therapeutic strategies to combat lung cancer. Surface-modified GNMs can be used as reliable, accurate, sensitive, and cheap lung cancer detection tools, as well as potent selective cytotoxic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Duma, N., Santana-Davila, R., Molina, J.R.: Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment. Mayo Clin. Proc. 94, 1623–1640 (2019)

    Article  CAS  Google Scholar 

  2. Woodman, C., Vundu, G., George, A., Wilson, C.M.: Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin. Cancer Biol. 69, 349–364 (2020)

    Article  Google Scholar 

  3. Wang, S., Liu, Y., Feng, Y., Zhang, J., Swinnen, J., Li, Y., Ni, Y.: A review on curability of cancers: more efforts for novel therapeutic options are needed. Cancers 11, 1782 (2019)

    Article  CAS  Google Scholar 

  4. Wang, S., Zimmermann, S., Parikh, K., Mansfield, A.S., Adjei, A.A.: Current diagnosis and management of small-cell lung cancer. Mayo Clin. Proc. 94, 1599–1622 (2019)

    Article  Google Scholar 

  5. Barabadi, H., Hosseini, O., Kamali, K.D., Shoushtari, F.J., Rashedi, M., Haghi-Aminjan, H., Saravanan, M.: Emerging theranostic silver nanomaterials to combat lung cancer: a systematic review. J. Cluster Sci. 31, 1–10 (2019)

    Article  Google Scholar 

  6. Vansteenkiste, J.F., Van De Kerkhove, C., Wauters, E., Van Mol, P.: Capmatinib for the treatment of non-small cell lung cancer. Expert Rev. Anticancer Ther. 19, 659–671 (2019)

    Article  CAS  Google Scholar 

  7. Wender, R., Fontham, E.T., Barrera, E., Jr., Colditz, G.A., Church, T.R., Ettinger, D.S., Etzioni, R., Flowers, C.R., Gazelle, G.S., Kelsey, D.K., LaMonte, S.J., Michaelson, J.S., Oeffinger, K.C., Shih, Y.C., Sullivan, D.C., Travis, W., Walter, L., Wolf, A.M., Brawley, O.W., Smith, R.A.: American Cancer Society lung cancer screening guidelines. CA Cancer J. Clin. 63, 107–117 (2013)

    Article  Google Scholar 

  8. Quintanal-Villalonga, Á., Molina-Pinelo, S.: Epigenetics of lung cancer: a translational perspective. Cell. Oncol. 42, 739–756 (2019)

    Article  CAS  Google Scholar 

  9. Liu, B., Sze, J., Li, L., Ornstein, K.A., Taioli, E.: Bivariate Spatial Pattern between Smoking Prevalence and Lung Cancer Screening in US Counties. Int. J. Environ. Res. Public Health 17, 3383 (2020)

  10. Prabhakar, B., Shende, P., Augustine, S.: Current trends and emerging diagnostic techniques for lung cancer. Biomed. Pharmacother. 106, 1586–1599 (2018)

  11. Rivera, M.P., Mehta, A.C., Wahidi, M.M.: Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 143, e142S-e165S (2013)

    Article  Google Scholar 

  12. Currie, G.P., Kennedy, A.M., Denison, A.R.: Tools used in the diagnosis and staging of lung cancer: what’s old and what’s new? QJM Mon. J. Assoc. Phys. 102, 443–448 (2009)

    CAS  Google Scholar 

  13. Feng, S.H., Yang, S.T.: The new 8th TNM staging system of lung cancer and its potential imaging interpretation pitfalls and limitations with CT image demonstrations. Diagn. Interv. Radiol. 25, 270–279 (2019)

    Article  Google Scholar 

  14. Diaz-Lagares, A., Mendez-Gonzalez, J., Hervas, D., Saigi, M., Pajares, M.J., Garcia, D., Crujerias, A.B., Pio, R., Montuenga, L.M., Zulueta, J., Nadal, E., Rosell, A., Esteller, M., Sandoval, J.: A novel epigenetic signature for early diagnosis in lung cancer . Clin. Cancer Res. 22, 3361–3371 (2016)

    Article  CAS  Google Scholar 

  15. Garbuzenko, O.B., Kuzmov, A., Taratula, O., Pine, S.R., Minko, T.: Strategy to enhance lung cancer treatment by five essential elements: inhalation delivery, nanotechnology, tumor-receptor targeting, chemo- and gene therapy. Theranostics 9, 8362–8376 (2019)

    Article  CAS  Google Scholar 

  16. Abd-Rabou, A.A., Ahmed, H.H.: Bevacizumab and CCR2 inhibitor nanoparticles induce cytotoxicity-mediated apoptosis in doxorubicin-treated hepatic and non-small lung cancer cells. Asian Pac. J. Cancer Prev. 20, 2225–2238 (2019)

    Article  CAS  Google Scholar 

  17. Choi, K.Y., Liu, G., Lee, S., Chen, X.: Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 4, 330–342 (2012)

    Article  CAS  Google Scholar 

  18. Mioc, A., Mioc, M., Ghiulai, R., Voicu, M., Racoviceanu, R., Trandafirescu, C., Dehelean, C., Coricovac, D., Soica, C.: Gold nanoparticles as targeted delivery systems and theranostic agents in cancer therapy. Curr. Med. Chem. 26, 6493–6513 (2019)

    Article  CAS  Google Scholar 

  19. Hamzawy, M.A., Abo-Youssef, A.M., Salem, H.F., Mohammed, S.A.: Antitumor activity of intratracheal inhalation of temozolomide (TMZ) loaded into gold nanoparticles and/or liposomes against urethane-induced lung cancer in BALB/c mice. Drug Deliv. 24, 599–607 (2017)

    Article  CAS  Google Scholar 

  20. Xia, F., Hou, W., Zhang, C., Zhi, X., Cheng, J., de la Fuente, J.M., Song, J., Cui, D.: pH-responsive gold nanoclusters-based nanoprobes for lung cancer targeted near-infrared fluorescence imaging and chemo-photodynamic therapy. Acta Biomater. 68, 308–319 (2018)

    Article  CAS  Google Scholar 

  21. Crous, A., Abrahamse, H.: Effective gold nanoparticle-antibody-mediated drug delivery for photodynamic therapy of lung cancer stem cells. Int. J. Mol. Sci. 21, 3742 (2020)

    Article  CAS  Google Scholar 

  22. Abdel-Rashid, R.S., Omar, S.M., Teiama, M.S., Khairy, A., Magdy, M.: Fabrication of gold nanoparticles in absence of surfactant as in vitro carrier of plasmid DNA. Int J Nanomedicine 14, 8399–8408 (2019)

    Article  CAS  Google Scholar 

  23. Thambiraj, S., Shruthi, S., Vijayalakshmi, R., Ravi Shankaran, D.: Evaluation of cytotoxic activity of docetaxel loaded gold nanoparticles for lung cancer drug delivery. Cancer Treat Res. Commun. 21, 100157 (2019)

  24. Liu, Z., Wu, Y., Guo, Z., Liu, Y., Shen, Y., Zhou, P., Lu, X.: Effects of internalized gold nanoparticles with respect to cytotoxicity and invasion activity in lung cancer cells. PLoS ONE 9, e99175 (2014)

    Article  Google Scholar 

  25. Amirjani, A., Koochak, N.N., Haghshenas, D.F.: Investigating the shape and size-dependent optical properties of silver nanostructures using UV–vis spectroscopy. J. Chem. Educ. 96, 2584–2589 (2019)

    Article  CAS  Google Scholar 

  26. Amirjani, A., Haghshenas, D.F.: Ag nanostructures as the surface plasmon resonance (SPR)˗based sensors: a mechanistic study with an emphasis on heavy metallic ions detection. Sens. Actuators B Chem. 273, 1768–1779 (2018)

    Article  CAS  Google Scholar 

  27. Prabowo, B.A., Purwidyantri, A., Liu, K.C.: Surface plasmon resonance optical sensor: a review on light source technology. Biosensors 8, 80 (2018)

    Article  CAS  Google Scholar 

  28. Amendola, V., Pilot, R., Frasconi, M., Maragò, O.M., Iatì, M.A.: Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017)

    Article  Google Scholar 

  29. Knights, O.B., McLaughlan, J.R.: Gold nanorods for light-based lung cancer theranostics. Int. J. Mol. Sci. 19, 3318 (2018)

    Article  Google Scholar 

  30. Khandker, S.S., Shakil, M.S., Hossen, M.S.: Gold nanoparticles; potential nanotheranostic agent in breast cancer: a comprehensive review with systematic search strategy. Curr. Drug Metab. 21, 579–598 (2020)

  31. Leng, F., Liu, F., Yang, Y.: Strategies on nanodiagnostics and nanotherapies of the three common cancers. Nanomaterials 8, 202 (2018)

    Article  Google Scholar 

  32. Kwon, Y., Kim, M., Jung, H.S., Kim, Y., Jeoung, D.: Targeting autophagy for overcoming resistance to anti-EGFR treatments. Cancers 11, 1374 (2019)

    Article  CAS  Google Scholar 

  33. Tam, N.C., Scott, B.M., Wilson, B.C., Zheng, G.: Lung cancer targeted Raman active phospholipid gold nanoparticles for ultrasensitive and specific molecular imaging and detection. In: European Conference on Biomedical Optic (Optical Society of America), vol. 8090, p. 80900A. (2011)

  34. Han, W., Yang, W., Gao, F., Cai, P., Wang, J., Wang, S., Xue, J., Gao, X., Liu, Y.: Iodine-124 labeled gold nanoclusters for positron emission tomography imaging in lung cancer model. J. Nanosci. Nanotechnol. 20, 1375–1382 (2020)

    Article  CAS  Google Scholar 

  35. Nekouian, R., Khalife, N.J., Salehi, Z.: Development of gold nanoparticle based colorimetric biosensor for detection of fibronectin in lung cancer cell line. Adv. Tech. Biol. Med. 2, 2379 (2014)

    Article  Google Scholar 

  36. Hun, X., Liu, B., Meng, Y.: Ultrasensitive chemiluminescence assay for the lung cancer biomarker cytokeratin 21–1 via a dual amplification scheme based on the use of encoded gold nanoparticles and a toehold-mediated strand displacement reaction. Microchim. Acta 184, 3953–3959 (2017)

    Article  Google Scholar 

  37. Daraee, H., Pourhassanmoghadam, M., Akbarzadeh, A., Zarghami, N., Rahmati-Yamchi, M.: Gold nanoparticle-oligonucleotide conjugate to detect the sequence of lung cancer biomarker. Artif. Cells Nanomed. Biotechnol. 44, 1417–1423 (2016)

    Article  CAS  Google Scholar 

  38. Gao, W., Wang, W., Yao, S., Wu, S., Zhang, H., Zhang, J., Jing, F., Mao, H., Jin, Q., Cong, H., Jia, C., Zhang, G., Zhao, J.: Highly sensitive detection of multiple tumor markers for lung cancer using gold nanoparticle probes and microarrays. Anal. Chim. Acta 958, 77–84 (2017)

    Article  CAS  Google Scholar 

  39. Ho, J.A., Chang, H.C., Shih, N.Y., Wu, L.C., Chang, Y.F., Chen, C.C., Chou, C.: Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. Anal. Chem. 82, 5944–5950 (2010)

    Article  CAS  Google Scholar 

  40. Zhang, H., Ke, H., Wang, Y., Li, P., Huang, C., Jia, N.: 3D carbon nanosphere and gold nanoparticle-based voltammetric cytosensor for cell line A549 and for early diagnosis of non-small cell lung cancer cells. Mikrochim. Acta 186, 39 (2018)

    Article  Google Scholar 

  41. Wei, Z., Zhang, J., Zhang, A., Wang, Y., Cai, X.: Electrochemical detecting lung cancer-associated antigen based on graphene-gold nanocomposite. Molecules 22, 392 (2017)

    Article  Google Scholar 

  42. Asadzadeh-Firouzabadi, A., Zare, H.R.: Application of cysteamine-capped gold nanoparticles for early detection of lung cancer-specific miRNA (miR-25) in human blood plasma. Anal. Methods 9, 3852–3861 (2017)

    Article  CAS  Google Scholar 

  43. Ashton, J.R., Gottlin, E.B., Patz, E.F., Jr., West, J.L., Badea, C.T.: A comparative analysis of EGFR-targeting antibodies for gold nanoparticle CT imaging of lung cancer. PLoS ONE 13, e0206950 (2018)

    Article  Google Scholar 

  44. Ashton, J.R., Clark, D.P., Moding, E.J., Ghaghada, K., Kirsch, D.G., West, J.L., Badea, C.T.: Dual-energy micro-CT functional imaging of primary lung cancer in mice using gold and iodine nanoparticle contrast agents: a validation study. PLoS ONE 9, e88129 (2014)

    Article  Google Scholar 

  45. Zhou, B., Yang, J., Peng, C., Zhu, J., Tang, Y., Zhu, X., Shen, M., Zhang, G., Shi, X.: PEGylated polyethylenimine-entrapped gold nanoparticles modified with folic acid for targeted tumor CT imaging. Colloids Surf. B Biointerfaces 140, 489–496 (2016)

    Article  CAS  Google Scholar 

  46. Chen, J., Sun, Y., Chen, Q., Wang, L., Wang, S., Tang, Y., Shi, X., Wang, H.: Multifunctional gold nanocomposites designed for targeted CT/MR/optical trimodal imaging of human non-small cell lung cancer cells. Nanoscale 8, 13568–13573 (2016)

    Article  CAS  Google Scholar 

  47. Liu, J., Xiong, Z., Zhang, J., Peng, C., Klajnert-Maculewicz, B.: Zwitterionic Gadolinium(III)-complexed dendrimer-entrapped gold nanoparticles for enhanced computed tomography/magnetic resonance imaging of lung cancer metastasis. ACS Appl Mater Interfaces 11(2019), 15212–15221 (2019)

    Article  CAS  Google Scholar 

  48. Barash, O., Peled, N., Tisch, U., Bunn, P.A., Jr., Hirsch, F.R., Haick, H.: Classification of lung cancer histology by gold nanoparticle sensors. Nanomedicine 8, 580–589 (2012)

    Article  CAS  Google Scholar 

  49. Peng, G., Tisch, U., Adams, O., Hakim, M., Shehada, N., Broza, Y.Y., Billan, S., Abdah-Bortnyak, R., Kuten, A., Haick, H.: Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009)

    Article  CAS  Google Scholar 

  50. Barash, O., Peled, N., Hirsch, F.R., Haick, H.: Sniffing the unique “odor print” of non-small-cell lung cancer with gold nanoparticles. Small 5, 2618–2624 (2009)

    Article  CAS  Google Scholar 

  51. Cao, X., Wang, Z., Bi, L., Zheng, J.: Label-free detection of human serum using surface-enhanced raman spectroscopy based on highly branched gold nanoparticle substrates for discrimination of non-small cell lung cancer. J. Chem. 2018, 9012645 (2018)

  52. Wang, M., Cao, X., Lu, W., Tao, L., Zhao, H., Wang, Y., Guo, M., Dong, J., Qian, W.: Surface-enhanced Raman spectroscopic detection and differentiation of lung cancer cell lines (A549, H1229) and normal cell line (AT II) based on gold nanostar substrates. RSC Adv. 4, 64225–64234 (2014)

    Article  CAS  Google Scholar 

  53. Chon, H., Lee, S., Son, S.W., Oh, C.H., Choo, J.: Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hollow gold nanospheres. Anal. Chem. 81, 3029–3034 (2009)

    Article  CAS  Google Scholar 

  54. Wu, P., Gao, Y., Lu, Y., Zhang, H., Cai, C.: High specific detection and near-infrared photothermal therapy of lung cancer cells with high SERS active aptamer-silver-gold shell-core nanostructures. Analyst 138, 6501–6510 (2013)

    Article  CAS  Google Scholar 

  55. Liu, Y., Bhattarai, P., Dai, Z., Chen, X.: Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 48, 2053–2108 (2019)

    Article  CAS  Google Scholar 

  56. Liu, Y., Crawford, B.M., Vo-Dinh, T.: Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunotherapy 10, 1175–1188 (2018)

    Article  CAS  Google Scholar 

  57. Riley, R.S., Day, E.S.: Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, 1449 (2017)

    Article  Google Scholar 

  58. Liu, B., Cao, W., Qiao, G., Yao, S., Pan, S., Wang, L., Yue, C., Ma, L., Liu, Y., Cui, D.: Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer. Acta Biomater. 99, 307–319 (2019)

    Article  CAS  Google Scholar 

  59. Zhao, Y.: Anti-EGFR peptide-conjugated triangular gold nanoplates for computed tomography/photoacoustic imaging-guided photothermal therapy of non-small cell. Lung Cancer 10, 16992–17003 (2018)

    CAS  Google Scholar 

  60. Liu, X., Lloyd, M.C., Fedorenko, I.V., Bapat, P., Zhukov, T., Huo, Q.: Enhanced imaging and accelerated photothermolysis of A549 human lung cancer cells by gold nanospheres. Nanomedicine (Lond.) 3, 617–626 (2008)

    Article  CAS  Google Scholar 

  61. Liu, J., Cui, H., Yan, S., Jing, X., Wang, D., Meng, L.: Gold nanostars decorated MnO2 nanosheets for magnetic resonance imaging and photothermal erasion of lung cancer cell. Mater. Today Commun. 16, 97–104 (2018)

    Article  CAS  Google Scholar 

  62. Kwiatkowski, S., Knap, B., Przystupski, D., Saczko, J., Kędzierska, E., Knap-Czop, K., Kotlińska, J., Michel, O., Kotowski, K., Kulbacka, J.: Photodynamic therapy—mechanisms, photosensitizers and combinations. Biomed. Pharmacother. 106, 1098–1107 (2018)

    Article  CAS  Google Scholar 

  63. Rkein, A.M., Ozog, D.M.: Photodynamic therapy. Dermatol. Clin. 32, 415–425 (2014)

    Article  CAS  Google Scholar 

  64. El-Hussein, A., Mfouo-Tynga, I., Abdel-Harith, M., Abrahamse, H.: Comparative study between the photodynamic ability of gold and silver nanoparticles in mediating cell death in breast and lung cancer cell lines. J. Photochem. Photobiol. B 153, 67–75 (2015)

    Article  CAS  Google Scholar 

  65. Liu, B., Qiao, G., Han, Y., Shen, E., Alfranca, G., Tan, H., Wang, L., Pan, S., Ma, L., Xiong, W., Liu, Y., Cui, D.: Targeted theranostics of lung cancer: PD-L1-guided delivery of gold nanoprisms with chlorin e6 for enhanced imaging and photothermal/photodynamic therapy. Acta Biomater. 117, 361–373 (2020)

    Article  CAS  Google Scholar 

  66. Baskar, R., Lee, K.A., Yeo, R., Yeoh, K.W.: Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9, 193–199 (2012)

    Article  Google Scholar 

  67. Shahhoseini, E., Feltis, B.N., Nakayama, M., Piva, T.J.: Combined effects of gold nanoparticles and ionizing radiation on human prostate and lung cancer cell. Migration 20, 4488 (2019)

    CAS  Google Scholar 

  68. Luo, H., Xu, M., Zhu, X., Zhao, J., Man, S., Zhang, H.: Lung cancer cellular apoptosis induced by recombinant human endostatin gold nanoshell-mediated near-infrared thermal therapy. Int. J. Clin. Exp. Med. 8, 8758–8766 (2015)

    Google Scholar 

  69. Wang, C., Li, X., Wang, Y., Liu, Z., Fu, L., Hu, L.: Enhancement of radiation effect and increase of apoptosis in lung cancer cells by thio-glucose-bound gold nanoparticles at megavoltage radiation energies. J. Nanopart. Res. 15, 1642 (2013)

    Article  Google Scholar 

  70. Jiang, J., Mao, Q., Li, H., Lou, J.: Apigenin stabilized gold nanoparticles increased radiation therapy efficiency in lung cancer cells. Int. J. Clin. Exp. Med. 10, 13298–13305 (2017)

    Google Scholar 

  71. Guthi, J.S., Yang, S.G., Huang, G., Li, S., Khemtong, C., Kessinger, C.W., Peyton, M., Minna, J.D., Brown, K.C., Gao, J.: MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol. Pharm. 7, 32–40 (2010)

    Article  CAS  Google Scholar 

  72. Cryer, A.M.: Tyrosine kinase inhibitor gold nanoconjugates for the treatment of non-small cell. Lung Cancer 11, 16336–16346 (2019)

    CAS  Google Scholar 

  73. Li, T., Yan, G., Bai, Y., Wu, M., Fang, G., Zhang, M., Xie, Y., Borjigidai, A., Fu, B.: Papain bioinspired gold nanoparticles augmented the anticancer potency of 5-FU against lung cancer. J. Exp. Nanosci. 15, 109–128 (2020)

    Article  Google Scholar 

  74. Qian, Y., Qiu, M., Wu, Q., Tian, Y., Zhang, Y., Gu, N., Li, S., Xu, L., Yin, R.: Enhanced cytotoxic activity of cetuximab in EGFR-positive lung cancer by conjugating with gold nanoparticles. Sci. Rep. 4, 7490 (2014)

    Article  CAS  Google Scholar 

  75. Liu, R., Xiao, W., Hu, C., Xie, R., Gao, H.: Theranostic size-reducible and no donor conjugated gold nanocluster fabricated hyaluronic acid nanoparticle with optimal size for combinational treatment of breast cancer and lung metastasis. J. Control Release 278, 127–139 (2018)

    Article  CAS  Google Scholar 

  76. Yahya, I., Eltayeb, M.: Computational modeling of gold nanoparticle in lung cancer photothermal therapy. J. Clin. Eng. 44, 157–164 (2019)

    Article  Google Scholar 

  77. Rasmi, R.R., Sakthivel, K.M., Guruvayoorappan, C.: NF-κB inhibitors in treatment and prevention of lung cancer. Biomed. Pharmacother. 130, 110569 (2020)

    Article  CAS  Google Scholar 

  78. Ahmadian, E., Eftekhari, A., Babaei, H., Nayebi, A.M., Eghbal, M.A.: Anti-cancer effects of citalopram on hepatocellular carcinoma cells occur via cytochrome C release and the activation of NF-kB. Anticancer Agents Med. Chem. 17, 1570–1577 (2017)

    Article  CAS  Google Scholar 

  79. Lu, W., Zhang, G., Zhang, R., Flores, L.G., 2nd., Huang, Q., Gelovani, J.G., Li, C.: Tumor site-specific silencing of NF-kappaB p65 by targeted hollow gold nanosphere-mediated photothermal transfection. Cancer Res. 70, 3177–3188 (2010)

    Article  CAS  Google Scholar 

  80. Amreddy, N., Muralidharan, R., Babu, A., Mehta, M., Johnson, E.V., Zhao, Y.D., Munshi, A., Ramesh, R.: Tumor-targeted and pH-controlled delivery of doxorubicin using gold nanorods for lung cancer therapy. Int. J. Nanomed. 10, 6773–6788 (2015)

    CAS  Google Scholar 

  81. Ramalingam, V., Varunkumar, K., Ravikumar, V., Rajaram, R.: Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci. Rep. 8, 3815 (2018)

    Article  Google Scholar 

  82. Coelho, S.C., Almeida, G.M., Santos-Silva, F., Pereira, M.C., Coelho, M.A.: Enhancing the efficiency of bortezomib conjugated to pegylated gold nanoparticles: an in vitro study on human pancreatic cancer cells and adenocarcinoma human lung alveolar basal epithelial cells. Expert Opin. Drug Deliv. 13, 1075–1081 (2016)

    Article  CAS  Google Scholar 

  83. Kim, D., Yeom, J.H., Lee, B., Lee, K., Bae, J., Rhee, S.: Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain. Biochem. Biophys. Res. Commun. 464, 392–395 (2015)

    Article  CAS  Google Scholar 

  84. Chaves, N., Santiago, A., Alías, J.C.: Quantification of the antioxidant activity of plant extracts: analysis of sensitivity and hierarchization based on the method used. Antioxidant 9, 76 (2020)

    Article  CAS  Google Scholar 

  85. Eftekhari, A., Dizaj, S.M., Chodari, L., Sunar, S., Hasanzadeh, A., Ahmadian, E., Hasanzadeh, M.: The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother. 103, 1018–1027 (2018)

    Article  CAS  Google Scholar 

  86. Govindaraju, S., Roshini, A., Lee, M.-H., Yun, K.: Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. Int. J. Nanomed. 14, 5147 (2019)

    Article  CAS  Google Scholar 

  87. Zhang, X., Tan, Z., Jia, K., Zhang, W., Dang, M.: Rabdosia rubescens Linn: green synthesis of gold nanoparticles and their anticancer effects against human lung cancer cells A549. Artif. Cells Nanomed. Biotechnol. 47, 2171–2178 (2019)

    Article  CAS  Google Scholar 

  88. Zheng, Y., Zhang, J., Zhang, R., Luo, Z., Wang, C., Shi, S.: Gold nano particles synthesized from Magnolia officinalis and anticancer activity in A549 lung cancer cells. Artif Cells Nanomed Biotechnol 47, 3101–3109 (2019)

    Article  CAS  Google Scholar 

  89. Vijayakumar, S., Vaseeharan, B., Malaikozhundan, B., Gopi, N., Ekambaram, P., Pachaiappan, R., Velusamy, P., Murugan, K., Benelli, G., Suresh Kumar, R., Suriyanarayanamoorthy, M.: Therapeutic effects of gold nanoparticles synthesized using Musa paradisiaca peel extract against multiple antibiotic resistant Enterococcus faecalis biofilms and human lung cancer cells (A549). Microb. Pathog. 102, 173–183 (2017)

    Article  CAS  Google Scholar 

  90. Kumar, G., Ghosh, M., Pandey, D.M.: Method development for optimised green synthesis of gold nanoparticles from Millettia pinnata and their activity in non-small cell lung cancer cell lines. IET Nanobiotechnol. 13, 626–633 (2019)

    Article  Google Scholar 

  91. Ramalingam, V., Revathidevi, S., Shanmuganayagam, T., Muthulakshmi, L., Rajaram, R.: Biogenic gold nanoparticles induce cell cycle arrest through oxidative stress and sensitize mitochondrial membranes in A549 lung cancer cells. RSC Adv. 6, 20598–20608 (2016)

    Article  CAS  Google Scholar 

  92. Jha, B., Prasad, K., Jha, A.K.: Cytotoxicity of biogenic gold nanoparticles against lung cancer cell line (A549): an application oriented perspective, Preprints, Version 1 (2018)

  93. Rajeshkumar, S.: Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J. Genet. Eng. Biotechnol. 14, 195–202 (2016)

    Article  CAS  Google Scholar 

  94. Castro-Aceituno, V., Abbai, R., Moon, S.S., Ahn, S., Mathiyalagan, R., Kim, Y.J., Kim, Y.J., Yang, D.C.: Pleuropterus multiflorus (Hasuo) mediated straightforward eco-friendly synthesis of silver, gold nanoparticles and evaluation of their anti-cancer activity on A549 lung cancer cell line. Biomed. Pharmacother. 93, 995–1003 (2017)

    Article  CAS  Google Scholar 

  95. Liu, M., Zhao, Y., Zhang, X.: Knockdown of glutamate cysteine ligase catalytic subunit by siRNA causes the gold nanoparticles-induced cytotoxicity in lung cancer cells. PLoS ONE 10, e0118870 (2015)

    Article  Google Scholar 

  96. Zhao, Y., Gu, X., Ma, H., He, X., Liu, M., Ding, Y.: Association of glutathione level and cytotoxicity of gold nanoparticles in lung cancer cells. J. Phys. Chem. C 115, 12797–12802 (2011)

    Article  CAS  Google Scholar 

  97. Liu, M., Gu, X., Zhang, K., Ding, Y., Wei, X., Zhang, X., Zhao, Y.: Gold nanoparticles trigger apoptosis and necrosis in lung cancer cells with low intracellular glutathione. J. Nanoparticle Res. 15, 1745 (2013)

    Article  Google Scholar 

  98. Ramalingam, V., Revathidevi, S., Shanmuganayagam, T., Muthulakshmi, L., Rajaram, R.: Gold nanoparticle induces mitochondria-mediated apoptosis and cell cycle arrest in nonsmall cell lung cancer cells. Gold Bull. 50, 177–189 (2017)

    Article  CAS  Google Scholar 

  99. Muthukumarasamyvel, T., Rajendran, G., Santhana Panneer, D., Kasthuri, J., Kathiravan, K., Rajendiran, N.: Role of surface hydrophobicity of dicationic amphiphile-stabilized gold nanoparticles on A549 lung cancer cells. ACS Omega 2, 3527–3538 (2017)

    Article  CAS  Google Scholar 

  100. Jesna, K.K., Ilanchelian, M.: Photophysical changes of thionine dye with folic acid capped gold nanoparticles by spectroscopic approach and its in vitro cytotoxicity towards A-549 lung cancer cells. J. Mol. Liq. 242, 1042–1051 (2017)

    Article  CAS  Google Scholar 

  101. Shahad Saif, K., Salman, SMd., Sakib, HMd.: Gold nanoparticles; potential nanotheranostic agent in breast cancer: a comprehensive review with systematic search strategy. Curr. Drug Metab. 21, 579–598 (2020)

    Article  Google Scholar 

  102. Barabadi, H., Vahidi, H., Damavandi Kamali, K., Rashedi, M., Hosseini, O., Saravanan, M.: Emerging theranostic gold nanomaterials to combat colorectal cancer: a systematic review. J. Cluster Sci. 31(2020), 651–658 (2020)

    Article  CAS  Google Scholar 

  103. Saravanan, M., Vahidi, H., Medina Cruz, D., Vernet-Crua, A., Mostafavi, E., Stelmach, R., Webster, T.J., Mahjoub, M.A., Rashedi, M., Barabadi, H.: Emerging antineoplastic biogenic gold nanomaterials for breast cancer therapeutics: a systematic review. Int. J. Nanomed. 15(2020), 3577–3595 (2020)

    Article  CAS  Google Scholar 

  104. Peng, F., Setyawati, M.I., Tee, J.K., Ding, X., Wang, J., Nga, M.E., Ho, H.K., Leong, D.T.: Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 14, 279–286 (2019)

    Article  CAS  Google Scholar 

  105. Li, X., Hu, Z., Ma, J., Wang, X., Zhang, Y., Wang, W., Yuan, Z.: The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nanoparticles. Colloids Surf. B Biointerfaces 167, 260–266 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This article did not receive any external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MSS; article search and selection: MSN and MSS; manuscript writing: MSN and MSS; figure drawing: MSH; table data collection: MSN and MA; manuscript review and final editorial comments: RJR.

Corresponding author

Correspondence to Rhonda J. Rosengren.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niloy, M.S., Shakil, M.S., Hossen, M.S. et al. Promise of gold nanomaterials as a lung cancer theranostic agent: a systematic review. Int Nano Lett 11, 93–111 (2021). https://doi.org/10.1007/s40089-021-00332-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00332-2

Keywords

Navigation