Bio-composites from banana tree fibers ambient with multi-walled carbon nanotubes: manufacturing and properties

Abstract

A biodegradable composite fibers have been fabricated from easily available banana tree fibers (BTFs) using a simple dip-drying technique, where carbon nanotubes (CNTs) are used as reinforcing agent. A safe radio frequency oxygen plasma processing method is used to functionalize the surface of the CNTs with hydrophilic oxygen-containing group. The fibers are chemically treated with NaOH followed by oxygen plasma treatment to increase the heat conduction between the fibers in thermal contact. The implications of incorporating CNTs in the BTFs are observed by studying the surface morphology, structural, thermal, electrical and mechanical properties. The homogeneous CNT coverage on the BTFs surface is featured by the scanning electron micrographs of the CNT/treated BTF. The crystallinity index is exposed through X-ray diffraction analysis, which indicates the crystalline feature of the nanocomposites. The surface modification by CNT treatment has improved the thermal stability and flame retardancy of BTFs. A gradual decrease of resistivity of these composite fibers is observed from 5.69 to 0.0021 Ω m by increasing the number of dip-drying cycle of BTFs in the CNTs solution. The electrical conductivity of the CNT/treated BTF becomes 163.75 S/m under the applied voltage of 100 V. The developed composite fibers exhibit an increase in the mechanical strength with the CNT coating. Therefore, the developed CNT-reinforced composite fibers affirm its aptitude as reliable reinforcement in electronic devices and as conductive fillers in composites industries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11

References

  1. 1.

    Joseph, P.V., Joseph, K., Thomas, S.: Effect of processing variables on the mechanical properties of sisal-fibers-reinforced polypropylene composites. Compos. Sci. Technol. 59(11), 1625–1640 (1999)

    CAS  Article  Google Scholar 

  2. 2.

    Udhayasankar, R., Karthikeyan, B.: A review on coconut shell reinforced composites. Int. J ChemTech Res. 8(11), 624–637 (2015)

    CAS  Google Scholar 

  3. 3.

    Maya, J.J., Sabu, T.: Biofibers and biocomposites. Carbohydr. Polym. 71(3), 343–364 (2008)

    Article  CAS  Google Scholar 

  4. 4.

    Devi, L.U., Bhagawan, S.S., Thomas, S.: Mechanical properties of pineapple leaf fibers-reinforced polyester composites. Appl. Polym. Sci. 64(9), 1739–1748 (1997)

    CAS  Article  Google Scholar 

  5. 5.

    Murali Mohan Rao, K., Mohana Rao, K., Ratna Prasad, A.V.: Fabricating and testing of natural fibers composites: vakka, sisal, bamboo and banana. Mater. Des. 31(1), 508–813 (2010)

    CAS  Article  Google Scholar 

  6. 6.

    Saliba, C.C., Orefice, R.L., Carneiro, J.R.G., Duarte, A.K., Schneider, W.T., Fernandes, M.R.F.: Effect of the incorporation of a novel natural inorganic short fibers on the properties of polyurethane composites. Polym. Test. 24(7), 819–824 (2005)

    CAS  Article  Google Scholar 

  7. 7.

    Ortega, Z., Morón, M., Monzón, D.M., Badalló, P., Paz, R.: Production of banana fiber yarns for technical textile reinforced composites. Materials 9, 370–386 (2016)

    Article  CAS  Google Scholar 

  8. 8.

    Atwa, Y., Maheshwari, N., Goldthorpe, I.A.: Silver nano wire coated threads for electrically conductive textiles. J. Mater. Chem. C 3, 3908–3912 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    Dong, H., Hinestroza, J.P.: Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. ACS Appl. Mater. Interfaces. 1(4), 797–803 (2009)

    CAS  Article  Google Scholar 

  10. 10.

    Alam, N., Maria, K.H., Rahman, M.J., Sultana, P., Mieno, T.: A wet chemical synthesis and characterization of mwcnt-starch biocomposites. J. Bang. Acad. Sci. 44(1), 43–52 (2020)

    CAS  Article  Google Scholar 

  11. 11.

    Tian, R., Wang, X., Li, M., Hu, H., Chen, R., Liu, F., Zheng, H., Wan, L.: An efficient route to functionalize singe-walled carbon Nanotubes using alcohols. Appl. Surf. Sci. 255(5), 3294–3299 (2008)

    CAS  Article  Google Scholar 

  12. 12.

    Müller, H., Opitz, C., Skala, L.: The highly dispersed metal state—physical and chemical properties. J. Mol. Catal. A 54, 389–405 (1989)

    Article  Google Scholar 

  13. 13.

    Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M.: Chemistry of carbon nanotubes. Chem. Rev. 106(3), 1105–1136 (2006)

    CAS  Article  Google Scholar 

  14. 14.

    Bhattacharya, M.: Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 9, 262 (2016)

    Article  CAS  Google Scholar 

  15. 15.

    Maria, K.H., Mieno, T.: In: Rahman, M.M., Asiri, A.M., (eds.) Production of Water Dispersible Carbon Nanotubes and Nanotube/Cellulose Composite, Carbon Nanotubes - RecentProgress, pp. 235–259. Intech Open (2018)

    Google Scholar 

  16. 16.

    Maria, K.H., Mieno, T.: Production and properties of carbon nanotube/cellulose composite paper. J. Nanomater. 2017, 6745029 (2017)

    Article  CAS  Google Scholar 

  17. 17.

    Rahman, M.J., Mieno, T.: Conductive cotton textile from safely functionalized carbon nanotubes. J. Nanomater. 2015, 978484 (2015)

    Article  CAS  Google Scholar 

  18. 18.

    Islam, M.J., Rahman, M.J., Mieno, T.: Safely functionalized carbon nanotube-coated jute fibers for advanced technology. Adv. Compos. Hybrid Mater. 3, 285–293 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    Felten, A., Bittencourt, C., Pireaux, J.J., Van Lier, G., Charlier, J.C.: Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments. J. Appl. Phys. 98(7), ArticleID 074308 (2005)

  20. 20.

    Chiu, C.H., Lin, C.C., Han, H.V.: High efficiency GaN-based light-emitting diodes with embedded air voids/SiO2 nanomasks, Nanotechnology, 23(4), Article ID 045303 (2012)

  21. 21.

    Rahman, M.J., Mieno, T.: Water-dispersible multiwalled carbon nanotubes obtained from citric–acid-assisted oxygen plasma functionalization. Nanomaterials 2014, 508192 (2014)

    Google Scholar 

  22. 22.

    Hirsch, A., Vostrowsky, O.: Functionalization of carbon nanotubes. Funct. Mol. Nanostruct. 245, 193–237 (2005)

    CAS  Article  Google Scholar 

  23. 23.

    Star, A., Bradley, K., Gabriel, J.C.P., Gruner, G.: Nano-electronic sensors: chemical detection using carbon nanotubes. Polym. Mater. Sci. Eng. 89, 204 (2003)

    CAS  Google Scholar 

  24. 24.

    El-Nahhal, I.M., Zourab, S.M., Kodeh, F.S., Selmane, M., Genois, I., Babonneau, F.: Nanosturctured copper oxide-cotton fibers: synthesis, characterization, and applications. Int. Nano Lett. 2, 14 (2012)

    Article  Google Scholar 

  25. 25.

    Manzetti, S., Gabriel, J.C.P.: Methods for dispersing carbon nanotubes for nanotechnology applications: liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control. Int. Nano Lett. 9, 31–49 (2019)

    CAS  Article  Google Scholar 

  26. 26.

    Parre, A., Karthikeyan, B., Balaji, A., Udhayasankar, R.: Investigation of chemical, thermal and morphological properties of untreated and NaOH treated banana fiber. Mater. Today Proc. 22(3), 347–352 (2019)

    Google Scholar 

  27. 27.

    Morales, J., Olayo, M.G., Cruz, G.J., Herrera, F.P., Olayo, R.: Plasma modification of cellulose fibers for composite materials. Appl. Polym. 101(6), 3821–3828 (2006)

    CAS  Article  Google Scholar 

  28. 28.

    Jandas, P.J., Mohanty, S., Nayak, S.K., Srivastava, H.: Effect of surface treatments of banana fibers on mechanical, thermai, and biodegrability properties of PLA/banana fibers biocomposites. Polym. Compos. 32(11), 1689–1700 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    Pandey, K.K., Pitman, A.J.: FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 52(3), 151–160 (2003)

    CAS  Article  Google Scholar 

  30. 30.

    Shah, H., Srinivasulu, B., Subhas, C.: Influence of banana fibre chemical modification on the mechanical and morphological properties of woven banana fabric/unsaturated polyester resin composites. Polym. Renew. Resour. 4(2), 61–84 (2013)

    Google Scholar 

  31. 31.

    Pandey, K.K.: A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Appl. Polym. Sci. 71(12), 1969–1975 (1999)

    CAS  Article  Google Scholar 

  32. 32.

    Udhayasankar, R., Karthikeyan, B.: Preparation and properties of cashew nut shell liquid-based composite reinforced by coconut shell particles. Surf. Rev. Lett. 26(4), 1–17 (2019)

    Article  CAS  Google Scholar 

  33. 33.

    Punyamurthy, R., Sampathkumar, D., Srinivasa, C.V., Bennehalli, B.: Effect of alkali treatment on water absorption of single cellulosic abaca fibers. Bio Resources 7(3), 3515–3524 (2012)

    CAS  Google Scholar 

  34. 34.

    Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M., Hai, Y.: Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 83(4), 1804–1811 (2011)

    CAS  Article  Google Scholar 

  35. 35.

    Dutta, D., Hazarika, R., Dutta, P.D., Goswami, T., Sengupta, P., Dutta, D.K.: Synthesis of Ag–Ag2S Janus nanoparticles supported on environmentally benign cellulose template and their catalytic applications. RSC Adv. 88, 85173–85181 (2016)

    Article  CAS  Google Scholar 

  36. 36.

    Zavadskii, A.E.: X-ray diffraction method of determining the degree of crystallinity of cellulose materials of different anisotropy. Fibre Chem. 36, 425–430 (2004)

    CAS  Article  Google Scholar 

  37. 37.

    Wang, Y., Weng, G.J.: Electrical conductivity of carbon nanotube and graphene-based nanocomposites. Micromech. Nanomech. Compos. Solids 56, 123–156 (2017)

    Google Scholar 

  38. 38.

    Kenned, J.J., Sankaranarayanasamy, K., Binoj, J.S., Chelliah, S.K.: Thermo-mechanical and morphological characterization of needle punched non-woven banana fibers reinforced polymer composites. Compos. Sci. Technol. 185, 107890 (2020)

    CAS  Article  Google Scholar 

  39. 39.

    Hatakeyama, H., Hatakeyama, T.: Interaction between water and hydrophilic polymers. Thermochim. Acta 308(1–2), 3–22 (1998)

    CAS  Article  Google Scholar 

  40. 40.

    Czihak, C., Muller, M., Schober, H., Heux, L., Vogl, G.: Dynamics of water adsorbed to cellulose. Phys. B 266(1–2), 87–91 (1999)

    CAS  Article  Google Scholar 

  41. 41.

    Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13), 1781–1788 (2007)

    CAS  Article  Google Scholar 

  42. 42.

    Beyer, G.: Short communication: carbon nanotubes as flame retardants for polymers. Fire Mater. 26(6), 291–293 (2002)

    CAS  Article  Google Scholar 

  43. 43.

    Hassan, M.Z., Sapuan, S.M., Roslan, S.A., Aziz, S.A., Sarip, S.: Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fibers reinforced epoxy composites using response surface methodology. J. Mater. Res. Technol. 8(4), 3517–3528 (2019)

    CAS  Article  Google Scholar 

  44. 44.

    Koziol, K., Vilatela, J., Moisala, A., Motta, M., Cunniff, P., Sennett, M., Windle, A.: High performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007)

    CAS  Article  Google Scholar 

  45. 45.

    Nor, A.M., Sultan, M.H., Jawaid, M., Talib, A.A., Azmi, R.A., Harmaen, A., Asaari, A.: The effects of multi-walled CNT in bamboo/glass fibre hybrid composites: tensile and flexural properties. BioResources 13(2), 4404–4415 (2018)

    CAS  Google Scholar 

  46. 46.

    Sapiai, N., Jumahat, A., Mahmud, J.: Mechanical properties of functionalized CNT filled kenaf reinforced epoxy composites. Mater. Res. Express 5, 045034 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge gratefully to the Centre for Advanced Research of Sciences, University of Dhaka, Dhaka, Bangladesh for technical support. The authors also acknowledge the help of Mr. Md. Johurul Islam of the Department of Physics, Bangladesh University of Engineering and Technology during the sample processing and some of the measurement process.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kazi Hanium Maria.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. Only the authors had the right to publish the results as they were involved in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mustafiz, M.B., Maria, K.H., Rahman, M.J. et al. Bio-composites from banana tree fibers ambient with multi-walled carbon nanotubes: manufacturing and properties. Int Nano Lett (2021). https://doi.org/10.1007/s40089-021-00331-3

Download citation

Keywords

  • Bio-composites
  • Carbon nanotubes
  • Banana fibers
  • Polymer composites
  • Oxygen plasma