Skip to main content
Log in

Comparative study of half-metallic ferromagnetic behaviour in ZnO monolayer doped with boron and carbon atoms

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Electronic band structures of B- and C-doped ZnO monolayers (ML) at high doping concentration are studied based on spin-polarized plane-wave DFT with Projector Augmented Wave Potentials and Generalized Gradient Approximation. Our results show that both the B- and C-doped structures at 3.13% impurity atom per supercell exhibit half-metallic ferromagnetic behaviour due to the spin-polarized 2p orbitals of the dopant atom, which are localized within the energy gap of the host lattice. A net magnetic moment of 1μB and 2μB are, respectively, found in the B- and C-doped structures mainly due to the partially filled dopant atom 2 p orbitals. Due to ferromagnetic coupling, magnetic moments from the neighbouring Zn atoms and the subsequent O atoms also contribute to the net magnetic moment. At a higher doping concentration of 6.25% impurity atom per supercell, both the materials completely transformed into metal. It is also found that while C doping maintains its ferromagnetic property at this doping concentration, the B-doped ZnO ML becomes antiferromagnetic metal. Our findings would provide valuable theoretical data for material scientists in fabrication of the doped ZnO ML in laboratory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schuck, A., Kim, H.E., Jung, K.-M., Hasenkamp, W., Kim, Y.-S.: Monitoring the hemostasis process through the electrical characteristics of a graphene-based field-effect transistor. Biosens. Bioelectron. 157, 112167 (2020)

    Article  CAS  Google Scholar 

  2. Gao, S., Wang, R., Bi, Y., Qu, H., Chen, Y., Zheng, L.: Identification of frozen/thawed beef based on label-free detection of hemin (Iron Porphyrin) with solution-gated graphene transistor sensors. Sens. Actuators B 305, 127167 (2020)

    Article  CAS  Google Scholar 

  3. Amiri, M., Karamati, M.R., Asgharizadeh, S.: Design of field effect transistor biosensor based on graphene nanoribbons with high resolution. Phys. E Low Dimens. Syst. Nanostruct. 120, 114036 (2020)

    Article  CAS  Google Scholar 

  4. Li, X., Zhi, L.: Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47, 3189–3216 (2018)

    Article  CAS  Google Scholar 

  5. Song, S., Shen, H., Wang, Y., Chu, X., Xie, J., Zhou, N., Shen, J.: Biomedical application of graphene: from drug delivery, tumor therapy, to theranostics. Colloids Surf B 185, 110596 (2020)

    Article  CAS  Google Scholar 

  6. Yue, Y., Jiang, C., Han, Y., Wang, M., Ren, J., Wu, Y.: Magnetic anisotropies of Mn-, Fe-, and Co-doped monolayer MoS2. J. Magn. Magn. Mater. 496, 165929 (2020)

    Article  CAS  Google Scholar 

  7. Li, H., Huang, S., Zhang, Q., Zhu, Z., Li, C., Meng, J., Tian, Y.: Nonmetal doping induced electronic and magnetic properties in MoSe2 monolayer. Chem. Phys. Lett. 692, 69–74 (2018)

    Article  CAS  Google Scholar 

  8. Ren, J., Xue, Y., Wang, L.: SO2 gas adsorption on the transition metal (Pd, Ag, Au and Pt) -doped monolayer MoSe2: A first-principles study. Chem. Phys. Lett. 733, 136631 (2019)

    Article  CAS  Google Scholar 

  9. Guan, X., Zhu, G., Wei, X., Cao, J.: Tuning the electronic properties of monolayer MoS2, MoSe2 and MoSSe by applying z-axial strain. Chem. Phys. Lett. 730, 191–197 (2019)

    Article  CAS  Google Scholar 

  10. Li, S., Ren, J.-C., Ao, Z., Liu, W.: Enhanced stability and induced magnetic moments of silicene by substitutional doping of nickel. Chem. Phys. Lett. 706, 202–207 (2018)

    Article  CAS  Google Scholar 

  11. Camacho-Mojica, D.C., López-Urías, F.: Extended line defects in BN, GaN, and AlN semiconductor materials: Graphene-like structures. Chem. Phys. Lett. 652, 73–78 (2016)

    Article  CAS  Google Scholar 

  12. Preobrajenski, A.B., Nesterov, M.A., Ng, M.L., Vinogradov, A.S., Mårtensson, N.: Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chem. Phys. Lett. 446, 119–123 (2007)

    Article  CAS  Google Scholar 

  13. Zheng, H., Li, X.-B., Chen, N.-K., Xie, S.-Y., Tian, W.Q., Chen, Y., Xia, H., Zhang, S.B., Sun, H.-B.: Monolayer II-VI semiconductors: A first-principles prediction. Physical Review B 92, 115307 (2015)

    Article  Google Scholar 

  14. Behera, H., Mukhopadhyay, G.: Tailoring the structural and electronic properties of a graphene-like ZnS monolayer using biaxial strain. J. Phys. D: Appl. Phys. 47, 075302 (2014)

    Article  CAS  Google Scholar 

  15. Xiao, W.-Z., Wang, L.-L.: Magnetic properties in CdS monolayer doped with first-row elements: a density functional theory investigation. Phys. Status Solidi B 251, 1257–1264 (2014)

    Article  CAS  Google Scholar 

  16. Guo, H., Zhao, Y., Lu, N., Kan, E., Zeng, X.C., Wu, X., Yang, J.: Tunable magnetism in a nonmetal-substituted ZnO monolayer: a first-principles study. J. Phys. Chem. C 116, 11336–11342 (2012)

    Article  CAS  Google Scholar 

  17. Zhou, S., Potzger, K., von Borany, J., Grötzschel, R., Skorupa, W., Helm, M., Fassbender, J.: Crystallographically oriented Co and Ni nanocrystals inside ZnO formed by ion implantation and postannealing. Phys. Rev. B 77, 035209 (2008)

    Article  Google Scholar 

  18. Yandong, M., Dai, Y., Huang, B.: Magnetism in non-transition-metal doped CdS studied by density functional theory. Comput. Mater. Sci. 50, 1661–1666 (2011)

    Article  Google Scholar 

  19. Tu, Z.C., Hu, X.: Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys. Rev. B 74, 035434 (2006)

    Article  Google Scholar 

  20. Pei, J., Feng, K., Zhao, X., Hao, Y., Wei, Y., Chen, S., Sun, B., Li, Y., Lv, H.: ZnO-based inverted hybrid solar cells using P3HT and spiro-OMeTAD with hole transporting property: Layered or blended. Chem. Phys. Lett. 729, 79–83 (2019)

    Article  CAS  Google Scholar 

  21. Tao, P., Feng, Q., Jiang, J., Zhao, H., Xu, R., Liu, S., Li, M., Sun, J., Song, Z.: Electroluminescence from ZnO nanowires homojunction LED grown on Si substrate by simple chemical vapor deposition. Chem. Phys. Lett. 522, 92–95 (2012)

    Article  CAS  Google Scholar 

  22. Lee, B.R., Goo, J.S., Kim, Y.W., You, Y.-J., Kim, H., Lee, S.-K., Shim, J.W., Kim, T.G.: Highly efficient flexible organic photovoltaics using quasi-amorphous ZnO/Ag/ZnO transparent electrodes for indoor applications. J. Power Sources 417, 61–69 (2019)

    Article  CAS  Google Scholar 

  23. Freeman, C.L., Claeyssens, F., Allan, N.L., Harding, J.H.: Graphitic nanofilms as precursors to wurtzite films: theory. Phys. Rev. Lett. 96, 066102 (2006)

    Article  Google Scholar 

  24. Tu, Z.C.: First-principles study on physical properties of a single ZnO monolayer with graphene-like structure. J. Comput. Theor. Nanosci. 7, 1182–1186 (2010)

    Article  CAS  Google Scholar 

  25. Tusche, C., Meyerheim, H.L., Kirschner, J.: Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys. Rev. Lett. 99, 026102 (2007)

    Article  CAS  Google Scholar 

  26. Weirum, G., Barcaro, G., Fortunelli, A., Weber, F., Schennach, R., Surnev, S., Netzer, F.P.: Growth and surface structure of zinc oxide layers on a Pd(111) surface. J. Phys. Chem. C 114, 15432–15439 (2010)

    Article  CAS  Google Scholar 

  27. Wakhare, S.Y., Deshpande, M.D.: The electronic and optical properties of monovalent atom-doped ZnO monolayers: the density functional theory. Bull. Mater. Sci. 42, 206 (2019)

    Article  Google Scholar 

  28. Topsakal, M., Cahangirov, S., Bekaroglu, E., Ciraci, S.: First-principles study of zinc oxide honeycomb structures. Phys. Rev. B 80, 235119 (2009)

    Article  Google Scholar 

  29. Schmidt, T.M., Miwa, R.H., Fazzio, A.: Ferromagnetic coupling in a Co-doped graphenelike ZnO sheet. Phys. Rev. B 81, 195413 (2010)

    Article  Google Scholar 

  30. Wang, Y., Ding, Y., Ni, J., Shi, S., Li, C., Shi, J.: Electronic structures of fully fluorinated and semifluorinated zinc oxide sheets. Appl. Phys. Lett. 96, 213117 (2010)

    Article  Google Scholar 

  31. Zhang, Y., Wu, S.-Q., Wen, Y.-H., Zhu, Z.-Z.: Surface-passivation-induced metallic and magnetic properties of ZnO graphitic sheet. Appl. Phys. Lett. 96, 223113 (2010)

    Article  Google Scholar 

  32. Fang, D.Q., Zhang, Y., Zhang, S.L.: Magnetism from 2p states in K-doped ZnO monolayer: a density functional study. EPL (Europhysics Letters) 114, 47012 (2016)

    Article  Google Scholar 

  33. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    Article  CAS  Google Scholar 

  34. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994)

    Article  Google Scholar 

  35. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  CAS  Google Scholar 

  36. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  Google Scholar 

  37. Claeyssens, F., Freeman, C.L., Allan, N.L., Sun, Y., Ashfold, M.N.R., Harding, J.H.: Growth of ZnO thin films—experiment and theory. J. Mater. Chem. 15, 139–148 (2005)

    Article  CAS  Google Scholar 

  38. Lany, S., Zunger, A.: Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. Phys. Rev. B 78, 235104 (2008)

    Article  Google Scholar 

  39. Miao, Y., Wang, Z., Zhao, H., Chen, Q., Wang, H., Wan, M., Chen, L., He, K., Wang, Q.: First principles studied tunable electronic and optical properties of 2D honeycomb ZnO monolayer engineered by biaxial strain and intrinsic vacancy. Mater. Sci. Eng. B 254, 114517 (2020)

    Article  CAS  Google Scholar 

  40. Lalrinkima, Lahriatzuala, Rai, D.P., Srivastava S.: Strain dependence of electronic properties and effective masses of monolayer ZnO from density functional theory. In: AIP Conf Proc., 2115 (2019) 030093.

  41. Tan, C., Sun, D., Tian, X., Huang, Y.: First-principles investigation of phase stability, electronic structure and optical properties of MgZnO monolayer. Materials (Basel Switzerland) 9, 877 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this research work was provided by SERB-DST, Govt. of India vide Grant No EEQ/2018/000854 Dated 23rd May 2019 as Major Research Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramesh Chandra Tiwari or Lalhriat Zuala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhana, L., Vanchhawng, L., Rai, D.P. et al. Comparative study of half-metallic ferromagnetic behaviour in ZnO monolayer doped with boron and carbon atoms. Int Nano Lett 11, 113–123 (2021). https://doi.org/10.1007/s40089-021-00330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00330-4

Keywords

Navigation