Molecular dynamics predictions of thermo-mechanical properties of carbon nanotube/polymeric composites


In this study, the mechanical and thermal properties of carbon nanotube-reinforced polymeric nano-composite have been predicted by simulating molecular dynamics (MD). The polymer matrix is of epoxy polymer type with EPON828 resin along with EpiCure Curing Agent-3234 hardener which is reinforced with a single-walled carbon nanotube (SWCNT). Mechanical and thermal properties such as density, elastic modulus, Poisson’s ratio, and coefficient of thermal expansion (CTE) for various states, including the cross-linking degree of resin and hardener molecules 10–65%, carbon nanotubes (CNTs) with different diameters, and weight fraction of carbon nanotubes of 0.5, 1 and 2% have been estimated. The cell’s stiffness matrix in all cases was extracted, and thermo-mechanical properties were obtained using it. The placement of carbon nanotubes in a representative cell is completely random which has a random orientation, and the cell is dynamically analyzed separately under constant temperature and constant pressure conditions at the specified time, and after equilibration, its properties are extracted. The results show an obvious increase in the elastic modulus by increasing cross-linking degrees and an increase in the elastic modulus, and a significant decrease in the nano-composite CTE when the weight fraction of CNTs has increased. The experimental studies and simulation of other researchers were examined to validate the simulation that, the results are in good agreement with each other.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    Zeng, Q.H., Yu, A.B., Lu, G.Q.: Multiscale modeling and simulation of polymer nanocomposites. Prog. Polym. Sci. 33, 191–269 (2008)

    CAS  Article  Google Scholar 

  2. 2.

    Levchik, S.V., Camino, G., Luda, M.P., Costa, L., Costes, B., Henry, Y., Muller, G., Morel, E.: Mechanistic study of thermal behaviour and combustion performance of epoxy resists II. TGDDM/DDS system. Polym. Degrad. Stab. 48, 359–370 (1995)

    CAS  Article  Google Scholar 

  3. 3.

    Al-Hossainy, A.F., Eid, M.R.: Structure, DFT calculations and heat transfer enhancement in [ZnO/PG + H2O]C hybrid nanofluid flow as a potential solar cell coolant application in a double-tube. J. Mater. Sci. 31, 15243–15257 (2020)

    CAS  Google Scholar 

  4. 4.

    Eid, M.R., Al-Hossainy, A.F.: Synthesis, DFT calculations, and heat transfer performance large-surface TiO2: ethylene glycol nanofluid and coolant applications. Eur. Phys. J. Plus 135, 596 (2020)

    CAS  Article  Google Scholar 

  5. 5.

    Eid, M.R., Mabood, F.: Entropy analysis of a hydromagnetic micropolar dusty carbon NTs-kerosene nanofluid with heat generation: Darc-Forchheimer scheme. J. Therm. Anal. Calorim. 12, 1–18 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    Muhammad, T., Lu, D.C., Mahanthesh, B., Eid, M.R., Ramzan, M., Dar, A.: Significance of Darcy-Forchheimer porous medium in nanouid through carbon nanotubes. Commun. Theor. Phys. 70, 361–366 (2018)

    CAS  Article  Google Scholar 

  7. 7.

    Eid, M.R., Al-Hossainy, A.F., Zoromba, M.S.: FEM for blood-based SWCNTs flow through a circular cylinder in a porous medium with electromagnetic radiation. Commun. Theor. Phys. 71, 1425–1434 (2019)

    CAS  Article  Google Scholar 

  8. 8.

    Li, C., Strachen, A.: Molecular dynamics predictions of thermal and mechanical properties of thermoset polymer EPON862/DETDA. Polym. 52, 2920–2928 (2011)

    CAS  Article  Google Scholar 

  9. 9.

    Bandyopadhyay, A., Valavala, P.K., Clancy, T.C., Wise, K.E., Odegard, G.D.: Molecular modeling of crosslinked epoxy polymers: the effect of crosslink density on thermomechanical properties. Polym. 52, 2445–2452 (2011)

    CAS  Article  Google Scholar 

  10. 10.

    Shenogina, N.B., Tsige, M., Patnaik, S.S., Mukhopadhyay, A.M.: Molecular modeling of elastic properties of thermosetting polymers using a dynamic deformation approach. Polym. 54, 3370–3376 (2013)

    CAS  Article  Google Scholar 

  11. 11.

    Ajayan, P.M., Stephan, O., Colliex, C., Trauth, D.: Aligned carbon nanotube Arrays formed by cutting a polymer resin-nanotube composite. Sci. 265, 1212–1214 (1994)

    CAS  Article  Google Scholar 

  12. 12.

    Thostensona, E.T., Renb, Zh., Choua, T.W.: Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)

    Article  Google Scholar 

  13. 13.

    Lau, K.T., Hui, D.: The revolutionary creation of new advanced materials-carbon nanotube composites. Compos. Part B 33, 263–277 (2002)

    Article  Google Scholar 

  14. 14.

    Kymakis, E., Alexandou, I., Amaratunga, G.A.J.: Single-walled carbon nanotube-polymer composites: Electrical, optical and structural investigation. Synth. Met. 127, 59–62 (2002)

    CAS  Article  Google Scholar 

  15. 15.

    Jeyranpour, F., Alahyarizadeha, Gh., Arab, B.: Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation. J. Mol. Graph. Model. 62, 157–164 (2015)

    CAS  Article  Google Scholar 

  16. 16.

    Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    CAS  Article  Google Scholar 

  17. 17.

    Zheng, Zh., Hou, G., Xia, X., Liu, J., Tsige, M., Wu, Y., Zhang, L.: Molecular dynamics simulation study of polymer nanocomposites with controllable dispersion of spherical nanoparticles. J. Phys. Chem. B 121, 10146–10156 (2017)

    CAS  Article  Google Scholar 

  18. 18.

    Hua, J., ZhCHLiu, D.S.Q.: Molecular dynamics study on the tensile properties of graphene/Cu nanocomposite. Int. J. Comput. Mater. Sci. Eng. 6, 1750021 (2017)

    CAS  Google Scholar 

  19. 19.

    Alian, A.R., Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of carbon nanotube epoxy composites. Polym. 70, 149–160 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    Garcia, F.G., Soares, B.G., Pita, V.J.R.R., Sa´nchezRieumont, R.J.: Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. J. Appl. Polym. Sci. 106, 2047–2055 (2007)

    CAS  Article  Google Scholar 

  21. 21.

    Al-Ostaz, A., Pal, Gh., Mantena, P.R., Cheng, A.: Molecular dynamics simulation of SWCNT–polymer nanocomposite and its constituents. J. Mater. Sci. 43, 164–173 (2008)

    CAS  Article  Google Scholar 

  22. 22.

    Rahman, R., Haque, A.: Molecular dynamic simulation of graphene reinforced nanocomposites for evaluating elastic constants. Procedia. Eng. 56, 789–794 (2013)

    CAS  Article  Google Scholar 

  23. 23.

    Zhang, W., Li, H., Gao, L., Zhang, Q., Zhong, W., Sui, G., Yang, X.: Molecular simulation and experimental analysis on thermal and mechanical properties of carbon nanotube/epoxy resin composites with different curing agents at high-low temperature. Polym. Compos. 39, 945–954 (2018)

    Article  Google Scholar 

  24. 24.

    Radue, M.S., Jensen, B.D., Gowtham, S., Klimek-McDonald, D.R., King, J.A., Odegard, G.M.: Comparing the mechanical response of Di-, Tri-, and Tetra-functional resin epoxies with reactive molecular dynamics. J. Polym. Sci. Part B: Polym. Phys. 56, 255–264 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    Dikshit, M.K., Engle, P.E.: Investigation of mechanical properties of CNT reinforced epoxy nanocomposite: a molecular dynamic simulations. Mater. Phys. Mech. 37, 7–15 (2018)

    CAS  Google Scholar 

  26. 26.

    Sheikhnejad, O., Nakamoto, T., Kalteis, A., Rajabtabar, A., Major, Z.: Molecular dynamic simulation of carbon nanotube reinforced nanocomposites: the effect of interface interaction on mechanical properties. MOJ Polym. Sci. 2, 6–10 (2018)

    Google Scholar 

  27. 27.

    Taheri, S., Shadman, M., Ahadi, Z., Asgari, F., Mighani, H.: A molecular dynamics simulation to investigate the thermal properties of SWCNT/poly (phenylenesulfone) nanocomposites. Int. Nano Lett. 4, 1–5 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    Rahimian-Koloor, S.M., Hashemianzadeh, S.M., Shokrieh, M.M.: Effect of CNT structural defects on the mechanical properties of CNT/Epoxy nanocomposite. Phys. B 540, 16–25 (2018)

    CAS  Article  Google Scholar 

  29. 29.

    WenXing, B., ChangChuna, Zh., WanZhaoa, C.: Simulation of young’s modulus of single-walled carbon nanotubes by molecular dynamics. Phys. B. 352, 156–163 (2004)

    Article  Google Scholar 

  30. 30.

    Lu, J.P.: Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 79, 1297–1300 (1997)

    CAS  Article  Google Scholar 

  31. 31.

    Li, C., Chou, T.: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids. Struct. 40, 2487–2499 (2003)

    Article  Google Scholar 

  32. 32.

    Tserpes, K.I., Papanikos, P., Labeas, G., Pantelakis, S.G.: Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites. Theoret. Appl. Fract. Mech. 49, 51–60 (2008)

    CAS  Article  Google Scholar 

  33. 33.

    To, C.W.S.: Bending and shear moduli of single-walled carbon nanotubes. Finite Elem. Anal. Des. 42, 404–413 (2006)

    Article  Google Scholar 

  34. 34.

    Hernandez, E., Goze, C., Bernier, P., Rubio, A.: Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502–4505 (1998)

    CAS  Article  Google Scholar 

  35. 35.

    Lai, W.M., Rubin, D., Krempl, E.: Introduction to continuum mechanics, 4th edn. Butterworth-Heinemann Elsevier Inc, UK (2010)

    Google Scholar 

  36. 36.

    Wu, C., Xu, W.: Atomistic molecular simulations of structure and dynamics of crosslinked epoxy resin. Polym. 48, 5802–5812 (2007)

    CAS  Article  Google Scholar 

Download references


The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information



Corresponding author

Correspondence to Majid Jamal-Omidi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soleimany, M.R., Jamal-Omidi, M., Nabavi, S.M. et al. Molecular dynamics predictions of thermo-mechanical properties of carbon nanotube/polymeric composites. Int Nano Lett (2021).

Download citation


  • Molecular dynamic simulation
  • Cross-linking
  • Polymeric nano-composite
  • Thermo-mechanical properties