A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications


The aerospace and defense industry's intense desire is to revamp the performance characteristics of space shuttle vehicles, military tanker vehicles by continuously driving the production of advanced materials with remarkable properties. Thus, the need for high strength and lower weight metals are increasing rapidly in these industries. In this view, many research works on composites have been proved, especially metal matrix composites (MMCs). Carbon nanotubes (CNTs) are rolled-up graphene sheets with superior mechanical, thermal, and electrical properties attracted by many researchers in fabrication with MMCs. Metal matrix composites are developed in making space shuttle components and jet engine parts due to their higher specific strength and wear resistance. Numerous experimental investigations were performed on CNT reinforced MMCs in the making of structural components in aerospace and military vehicles, but the challenge still exists in many factors such as the production of complex structural components with optimistic performance, poor scattering of CNT in MMCs due to the formation of agglomeration and to retain nanoscale properties in large fraction. The aim of this review is to discuss about the development of MMCs in aerospace and military applications, the importance of CNTs in the field of the aviation industry, challenges in aerospace and defense sectors, and highlighting the importance of various processing techniques adopted in the development of CNT reinforced MMCs.

This is a preview of subscription content, access via your institution.



Carbon nanotube


Single-walled carbon nanotube


Double-walled carbon nanotube


Multi-walled carbon nanotube


Metal matrix composites


Aluminium metal matrix composites


Titanium metal matrix composites


Magnesium metal matrix composites


Copper metal matrix composites


Electrically conductive adhesives












Carbon fibre


Silicon carbide

Al2O3 :

Aluminum oxide




Boron carbide

Si3N4 :

Silicon nitride

TiO2 :

Titanium dioxide


Titanium carbide

TiB2 :

Titanium diboride








  1. 1.

    Clyne, T.W., Withers, P.J.: An Introduction to Metal Matrix Composites. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  2. 2.

    Dermarkar, S.: Metal matrix composites. Metal Mater. Inst. Methods 2, 144–146 (1986)

    CAS  Google Scholar 

  3. 3.

    Haghshenas, M.: Metal–matrix composites. In: Reference Module in Materials Science and Materials Engineering, vol. 35, 03950-3 (2016)

  4. 4.

    Agarwal, A., Bakshi, S.R., Lahiri, D.: Carbon Nanotubes: Reinforced Metal Matrix Composites. CRC Press, Boca Raton (2018)

    Google Scholar 

  5. 5.

    Bandyopadhyay, N.R., Ghosh, S., Basumallick, A.: New generation metal matrix composites. Mater. Manuf. Process. 22(6), 679–682 (2007)

    CAS  Article  Google Scholar 

  6. 6.

    Yildirim, M., Özyürek, D., Gürü, M.: Investigation of microstructure and wear behaviors of al matrix composites reinforced by carbon nanotube. Fuller. Nanotub. Carbon Nanostruct. 24(7), 467–473 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    Kumar, G.V., Rao, C.S.P., Selvaraj, N.: Mechanical and tribological behavior of particulate reinforced aluminum metal matrix composites—a review. J. Miner. Mater. Charact. Eng. 10(01), 59 (2011)

    Google Scholar 

  8. 8.

    Mobasherpour, I., Tofigh, A.A., Ebrahimi, M.: Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying. Mater. Chem. Phys. 138(2–3), 535–541 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    Rath, A.P., Patel, S.K., Deep, N.: Synthesis and characterisation of silicon carbide nanoparticulate reinforced metal matrix composite. Mater. Today Proc. 33, 5419–5424 (2020)

  10. 10.

    Matikas, T.E.: High temperature fiber fragmentation characteristics of SiC single-fiber composite with titanium matrices. Adv. Compos. Mater 17(1), 75–87 (2008)

    CAS  Article  Google Scholar 

  11. 11.

    Merino, C.A.I., Sillas, J.L., Meza, J.M., Ramirez, J.H.: Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J. Alloy. Compd. 707, 257–263 (2017)

    Article  CAS  Google Scholar 

  12. 12.

    Velmurugan, V., Reddy, L.V.K., Thanikaikarasan, S.: A study on mechanical characterization of carbon nanotube reinforced metal matrix composites. Mater. Today Proc. 27, 2394–2397 (2020)

  13. 13.

    Chen, B., Li, S., Imai, H., Jia, L., Umeda, J., Takahashi, M., Kondoh, K.: Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests. Compos. Sci. Technol. 113, 1–8 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    Udupa, G. and Gangadharan, K.V., March.: Future applications of carbon nanotube reinforced functionally graded composite materials. In IEEE-International Conference on Advances In Engineering, Science And Management (ICAESM-2012), pp. 399–404. IEEE (2012)

  15. 15.

    Chen, B., Zhou, X.Y., Zhang, B., Kondoh, K., Li, J.S., Qian, M.: Microstructure, tensile properties and deformation behaviors of aluminium metal matrix composites co-reinforced by ex-situ carbon nanotubes and in-situ alumina nanoparticles. Mater. Sci. Eng. A 795, 139930 (2020)

    CAS  Article  Google Scholar 

  16. 16.

    Neubauer, E., Kitzmantel, M., Hulman, M., Angerer, P.: Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos. Sci. Technol. 70(16), 2228–2236 (2010)

    CAS  Article  Google Scholar 

  17. 17.

    Chen, B., Kondoh, K., Imai, H., Umeda, J.: Effect of initial state on dispersion evolution of carbon nanotubes in aluminium matrix composites during a high-energy ball milling process. Powder Metall. 59(3), 216–222 (2016)

    CAS  Article  Google Scholar 

  18. 18.

    Chen, L.Y., Konishi, H., Fehrenbacher, A., Ma, C., Xu, J.Q., Choi, H., Xu, H.F., Pfefferkorn, F.E., Li, X.C.: Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 67(1), 29–32 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    Esawi, A.M., Morsi, K., Sayed, A., Taher, M., Lanka, S.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70(16), 2237–2241 (2010)

    CAS  Article  Google Scholar 

  20. 20.

    Kartal, M., Uysal, M., Gul, H., Alp, A., Akbulut, H.: Pulse electrocodeposition of Ni/MWCNT nanocomposite coatings. Surf. Eng. 31(9), 659–665 (2015)

    CAS  Article  Google Scholar 

  21. 21.

    Fang, B., Li, J., Zhao, N., Shi, C., Ma, L., He, C., Liu, E.: Enhanced interface interaction between modified carbon nanotubes and magnesium matrix. Compos. Interfaces 25(12), 1101–1114 (2018)

    CAS  Article  Google Scholar 

  22. 22.

    Chavan, R., Desai, U., Mhatre, P., Chinchole, R.: A review: Carbon nanotubes. Int. J. Pharm. Sci. Rev. Res 13(1), 124–134 (2012)

    Google Scholar 

  23. 23.

    Papageorgiou, D.G., Li, Z., Liu, M., Kinloch, I.A., Young, R.J.: Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12(4), 2228–2267 (2020)

    CAS  Article  Google Scholar 

  24. 24.

    Kumar, A., Sharma, K., Dixit, A.R.: Carbon nanotube- and graphene-reinforced multiphase polymeric composites: review on their properties and applications. J. Mater. Sci. 55(7), 2682–2724 (2020)

  25. 25.

    Xia, K., Zhan, H., Gu, Y.: Graphene and carbon nanotube hybrid structure: a review. Procedia IUTAM 21, 94–101 (2017)

    Article  Google Scholar 

  26. 26.

    Li, B., Xiong, H., Xiao, Y.: Progress on synthesis and applications of porous carbon materials. Int. J. Electrochem. Sci 15, 1363–1377 (2020)

    CAS  Article  Google Scholar 

  27. 27.

    Wang, L., Hu, X.: Recent advances in porous carbon materials for electrochemical energy storage. Chem. Asian J. 13(12), 1518–1529 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    Zhou, X.L., Zhang, H., Shao, L.M., Lü, F., He, P.J.: Preparation and application of hierarchical porous carbon materials from waste and biomass: a review. Waste Biomass Valorization (2020)

  29. 29.

    Bhatt, P., Goe, A.: Carbon fibres: production, properties and potential use. Mater. Sci. Res. India 14(1), 52–57 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    Chand, S.: Review carbon fibers for composites. J. Mater. Sci. 35(6), 1303–1313 (2000)

    CAS  Article  Google Scholar 

  31. 31.

    Ahmad, H., Markina, A.A., Porotnikov, M.V., Ahmad, F.: A review of carbon fiber materials in automotive industry. In: IOP Conference Series: Materials Science and Engineering, vol. 971, no. 3, p. 032011. IOP Publishing (2020)

  32. 32.

    Rono, N., Kibet, J.K., Martincigh, B.S., Nyamori, V.O.: A review of the current status of graphitic carbon nitride. Crit. Rev. Solid State Mater. Sci. 57, 1–29 (2020)

  33. 33.

    Chan, M.H., Liu, R.S., Hsiao, M.: Graphitic carbon nitride-based nanocomposites and their biological applications: a review. Nanoscale 11(32), 14993–15003 (2019)

    CAS  Article  Google Scholar 

  34. 34.

    Shenderova, O.A., Shames, A.I., Nunn, N.A., Torelli, M.D., Vlasov, I., Zaitsev, A.: Synthesis, properties, and applications of fluorescent diamond particles. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 37(3), 030802 (2019)

    Google Scholar 

  35. 35.

    Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11–23 (2012)

    CAS  Article  Google Scholar 

  36. 36.

    Prabhakar, G.V.N.B., Kumar, Y.P., Kumar, P.D., Kumar, B.P., Raju, M.G., Naseema, S., Kumar, N.R., Jagannatham, M., Sunil, B.R.: Producing Al5083-CNT composites by friction stir processing: influence of grain refinement and CNT on mechanical and corrosion properties. Mater. Today Proc. 15, 44–49 (2019)

    CAS  Article  Google Scholar 

  37. 37.

    Suarez, S., Reinert, L., Mucklich, F.: Carbon nanotube (CNT)-reinforced metal matrix bulk composites: manufacturing and evaluation. Diam. Carbon Compos. Nanocomp, vol. 180 (2016). https://doi.org/10.5772/63886

  38. 38.

    Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites-a review. Int. Mater. Rev. 55(1), 41–64 (2010)

    CAS  Article  Google Scholar 

  39. 39.

    Chen, M., Fan, G., Tan, Z., Xiong, D., Guo, Q., Su, Y., Zhang, J., Li, Z., Naito, M., Zhang, D.: Design of an efficient flake powder metallurgy route to fabricate CNT/6061Al composites. Mater. Des. 142, 288–296 (2018)

    CAS  Article  Google Scholar 

  40. 40.

    Akbarpour, M.R., Alipour, S., Najafi, M.: Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method. Diam. Relat. Mater. 90, 93–100 (2018)

    CAS  Article  Google Scholar 

  41. 41.

    Song, G., Wang, Q., Sun, L., Li, S., Sun, Y., Fu, Q., Pan, C.: One-step synthesis of sandwich-type Cu/graphene/Cu ultrathin foil with enhanced property via electrochemical route. Mater. Des. 191, 108629 (2020)

    CAS  Article  Google Scholar 

  42. 42.

    Ghasali, E., Sangpour, P., Jam, A., Rajaei, H., Shirvanimoghaddam, K., Ebadzadeh, T.: Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Arch. Civ. Mech. Eng. 18, 1042–1054 (2018)

    Article  Google Scholar 

  43. 43.

    Xie, X., Chen, C., Ji, G., Xu, R., Tan, Z., Xie, Y., Li, Z., Liao, H.: A novel approach for fabricating a CNT/AlSi composite with the self-aligned nacre-like architecture by cold spraying. Nano Mater. Sci. 1(2), 137–141 (2019)

    Article  Google Scholar 

  44. 44.

    Bakshi, S.R., Singh, V., Seal, S., Agarwal, A.: Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf. Coat. Technol. 203(10–11), 1544–1554 (2009)

    CAS  Article  Google Scholar 

  45. 45.

    Bakshi, S.R., Musaramthota, V., Virzi, D.A., Keshri, A.K., Lahiri, D., Singh, V., Seal, S., Agarwal, A.: Spark plasma sintered tantalum carbide–carbon nanotube composite: effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties. Mater. Sci. Eng. A 528(6), 2538–2547 (2011)

    Article  CAS  Google Scholar 

  46. 46.

    Naser, M.Z., Chehab, A.I.: Materials and design concepts for space-resilient structures. Prog. Aerosp. Sci. 98, 74–90 (2018)

    Article  Google Scholar 

  47. 47.

    Kadaganchi, R., Gankidi, M.R., Gokhale, H.: Optimization of process parameters of aluminum alloy AA 2014–T6 friction stir welds by response surface methodology. Def. Technol. 11(3), 209–219 (2015)

    Article  Google Scholar 

  48. 48.

    Sauermann, R., Friedrich, B., Bünck, M., Bührig-Polaczek, A., Uggowitzer, P.J.: Semi-solid processing of tailored aluminium-lithium alloys for automotive applications. Adv. Eng. Mater. 9(4), 253–258 (2007)

    CAS  Article  Google Scholar 

  49. 49.

    Petrousek, P., Bidulsky, R., Zivcak, J., Kocisko, R., Bidulska, J., Hudak, R., Fedorikova, A., Rajtukova, V.: Mechanical properties and porosity of Ti–6Al–4V alloy prepared by AM technology. MM Sci J. 1752–1755 (2017). https://doi.org/10.17973/MMSJ.2017_02_2016190

  50. 50.

    Lomakin, I., Castillo-Rodriguez, M., Sauvage, X.: Microstructure, mechanical properties and aging behaviour of nanocrystalline copper–beryllium alloy. Mater. Sci. Eng. A 744, 206–214 (2019)

    CAS  Article  Google Scholar 

  51. 51.

    Gurrappa, I., Prasad, V.B.: Corrosion characteristics of aluminium based metal matrix composites. Mater. Sci. Technol. 22(1), 115–122 (2006)

    CAS  Article  Google Scholar 

  52. 52.

    Rawal, S.P.: Metal-matrix composites for space applications. Jom 53(4), 14–17 (2001)

    CAS  Article  Google Scholar 

  53. 53.

    Parsonage, T.: Beryllium metal matrix composites for aerospace and commercial applications. Mater. Sci. Technol. 16(7–8), 732–738 (2000)

    CAS  Article  Google Scholar 

  54. 54.

    Kar, C., Surekha, B.: Effect of red mud and TiC on friction and wear characteristics of Al 7075 metal matrix composites. Aust. J. Mech. Eng. 1–10 (2019). https://doi.org/10.1080/14484846.2019.1651138

  55. 55.

    Godfrey, T.M.T., Goodwin, P.S., WardClose, C.M.: Production of titanium particulate metal matrix composite by mechanical milling. Mater. Sci. Technol. 16(7–8), 753–758 (2000)

    CAS  Article  Google Scholar 

  56. 56.

    Paul, R.C., Joseph, R., Nadana Kumar, V., Booma Devi, P., Manigandan, S.: Experimental analysis of hybrid metal matrix composite reinforced with Al2O3 and graphite. Int. J. Ambient Energy. 1–5 (2019). https://doi.org/10.1080/01430750.2019.1653984

  57. 57.

    Mahboob, H., Sajjadi, S.A., Zebarjad, S.M.: Influence of nanosized Al2O3 weight percentage on microstructure and mechanical properties of Al–matrix nanocomposite. Powder Metall. 54(2), 148–152 (2011)

    CAS  Article  Google Scholar 

  58. 58.

    Surappa, M.K.: Aluminium matrix composites: challenges and opportunities. Sadhana 28(1–2), 319–334 (2003)

    CAS  Article  Google Scholar 

  59. 59.

    Hayat, M.D., Singh, H., He, Z., Cao, P.: Titanium metal matrix composites: an overview. Compos. A Appl. Sci. Manuf. 121, 418–438 (2019)

    CAS  Article  Google Scholar 

  60. 60.

    Sunil, B.R., Reddy, G.P.K., Patle, H., Dumpala, R.: Magnesium based surface metal matrix composites by friction stir processing. J. Magnes. Alloys 4(1), 52–61 (2016)

    CAS  Article  Google Scholar 

  61. 61.

    Kale, V.C.: Aluminium base metal matrix composites for aerospace application: a literature review. J. Mech. Civ. Eng. 12(6), 31–36 (2015)

    Google Scholar 

  62. 62.

    Bhandakkar, A., Prasad, R.C., Sastry, S.M.: Deformation behaviour of aluminium alloy AA6061-10% fly ash composites for aerospace application. In: Advanced Composites for Aerospace, Marine, and Land Applications. Springer, Cham, pp. 3–21 (2014)

  63. 63.

    Nturanabo, F., Masu, L., Kirabira, J.B.: Novel applications of aluminium metal matrix composites. In: Aluminium Alloys and Composites. IntechOpen (2019). https://doi.org/10.5772/intechopen.86225

  64. 64.

    Koli, D.K., Agnihotri, G., Purohit, R.: Advanced aluminium matrix composites: the critical need of automotive and aerospace engineering fields. Mater. Today Proc. 2(4–5), 3032–3041 (2015)

    Article  Google Scholar 

  65. 65.

    Ramkumar, K.R., Sivasankaran, S., Al-Mufadi, F.A., Siddharth, S., Raghu, R.: Investigations on microstructure, mechanical, and tribological behaviour of AA 7075-x wt.% TiC composites for aerospace applications. Arch. Civ. Mech. Eng. 19, 428–438 (2019)

    Article  Google Scholar 

  66. 66.

    Yan, C., Lifeng, W., Jianyue, R.: Multi-functional SiC/Al composites for aerospace applications. Chin. J. Aeronaut. 21(6), 578–584 (2008)

    Article  Google Scholar 

  67. 67.

    Dasgupta, R.: Aluminium alloy-based metal matrix composites: a potential material for wear resistant applications. Int. Sch. Res. Not, vol. 2012 (2012)

  68. 68.

    Suthar, J., Patel, K.M.: Processing issues, machining, and applications of aluminum metal matrix composites. Mater. Manuf. Process. 33(5), 499–527 (2018)

    CAS  Article  Google Scholar 

  69. 69.

    Hemanth, J., Divya, M.R.: Fabrication and corrosion behaviour of aluminium alloy (LM-13) reinforced with Nano-ZrO2 particulate chilled nano metal matrix composites (CNMMCs) for aerospace applications. J. Mater. Sci. Chem. Eng. 6(07), 136 (2018)

    CAS  Google Scholar 

  70. 70.

    Miracle, D.B.: Aeronautical applications of metal-matrix composites. ASM Handb. 21, 1043–1049 (2001)

    Google Scholar 

  71. 71.

    Rambabu, P.P.N.K.V., Prasad, N.E., Kutumbarao, V.V., Wanhill, R.J.H.: Aluminium alloys for aerospace applications. In: Aerospace Materials and Material Technologies. Springer, Singapore, pp. 29–52 (2017)

  72. 72.

    Sharma, V.K., Kumar, V., Joshi, R.S.: Investigation of rare earth particulate on tribological and mechanical properties of Al-6061 alloy composites for aerospace application. J. Mater. Res. Technol. 8(4), 3504–3516 (2019)

    CAS  Article  Google Scholar 

  73. 73.

    Landkof, B.: Development of high strength magnesium based MMC reinforced with SiC particles for satellite structure applications. Materialwiss. Werkstofftech. 34(4), 395–399 (2003)

    CAS  Article  Google Scholar 

  74. 74.

    Gupta, N., Luong, D.D., Cho, K.: Magnesium matrix composite foams—density, mechanical properties, and applications. Metals 2(3), 238–252 (2012)

    CAS  Article  Google Scholar 

  75. 75.

    Dey, A., Pandey, K.M.: Magnesium metal matrix composites—a review. Rev. Adv. Mater. Sci. 42(1), 58–67 (2015)

  76. 76.

    Xiang, S., Wang, X., Gupta, M., Wu, K., Hu, X., Zheng, M.: Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties. Sci Rep. 6, 38824 (2016)

    CAS  Article  Google Scholar 

  77. 77.

    Peyrow, H.D.: An overview of magnesium based alloys for aerospace applications. In: The 14th International Conference Iranian Aerospace Society (2015)

  78. 78.

    Kurzynowski, T., Pawlak, A., Smolina, I.: The potential of SLM technology for processing magnesium alloys in aerospace industry. Arch. Civ. Mech. Eng. 20(1), 1–13 (2020)

    Article  Google Scholar 

  79. 79.

    Kasprzak, W., Czerwinski, F., Niewczas, M., Chen, D.L.: Correlating hardness retention and phase transformations of Al and Mg cast alloys for aerospace applications. J. Mater. Eng. Perform. 24(3), 1365–1378 (2015)

    CAS  Article  Google Scholar 

  80. 80.

    Czerwinski, F.: Controlling the ignition and flammability of magnesium for aerospace applications. Corros. Sci. 86, 1–16 (2014)

    CAS  Article  Google Scholar 

  81. 81.

    Arruebarrena, G., Hurtado, I., Vainola, J., Cingi, C., Devenyi, S., Townsend, J., Mahmood, S., Wendt, A., Weiss, K., Ben-Dov, A.: Development of investment-casting process of Mg-alloys for aerospace applications. Adv. Eng. Mater. 9(9), 751–756 (2007)

    CAS  Article  Google Scholar 

  82. 82.

    Dash, D., Samanta, S., Rai, R.N.: Study on fabrication of magnesium based metal matrix composites and its improvement in mechanical and tribological properties—a review. In: IOP Conference Series: Materials Science and Engineering, vol. 377, p. 012133 (2018)

  83. 83.

    Viswanathan, R., Sivashankar, N., Chandrakumar, S., Karthik, R.: Improving corrosion resistance of magnesium alloy for aerospace applications. Int. J. Mech. Prod. Eng. Res. Dev. 9(3), 769–774 (2019)

    Google Scholar 

  84. 84.

    Sharma, S., Sharma, S.: Critical review on processing and properties of magnesium matrix composites. J. Mater. Sci. Surf. Eng 5(7), 696–700 (2017)

    Google Scholar 

  85. 85.

    Anbarasan, A., Alvin, P.A., Kannan, K., Lokesh, M.: Mechanical characterisation of magnesium matrix composite for aerospace application. IJRAR 7, 724–729 (2020)

    Google Scholar 

  86. 86.

    Bathini, U., Srivatsan, T.S., Patnaik, A.K., Menzemer, C.C.: Mechanisms governing fatigue, damage, and fracture of commercially pure titanium for viable aerospace applications. J. Aerosp. Eng. 24(4), 415–424 (2011)

    Article  Google Scholar 

  87. 87.

    Inagaki, I., Takechi, T., Shirai, Y., Ariyasu, N.: Application and features of titanium for the aerospace industry. Nippon Steel Sumitomo Metal Tech. Rep. 106, 22–27 (2014)

    Google Scholar 

  88. 88.

    Gomez-Gallegos, A., Mandal, P., Gonzalez, D., Zuelli, N., Blackwell, P.: Studies on titanium alloys for aerospace application. In: Defect and Diffusion Forum, Trans Tech Publications Ltd, pp. 419–423 (2018)

  89. 89.

    Singh, P., Pungotra, H., Kalsi, N.S.: On the characteristics of titanium alloys for the aircraft applications. Mater. Today Proc. 4(8), 8971–8982 (2017)

    CAS  Article  Google Scholar 

  90. 90.

    Santhosh, R., Geetha, M., Rao, M.N.: Recent developments in heat treatment of beta titanium alloys for aerospace applications. Trans. Indian Inst. Met. 70(7), 1681–1688 (2017)

    CAS  Article  Google Scholar 

  91. 91.

    Khanna, N., Davim, J.P.: Design-of-experiments application in machining titanium alloys for aerospace structural components. Measurement 61, 280–290 (2015)

    Article  Google Scholar 

  92. 92.

    Muszka, K., Madej, L., Wynne, B.P.: Application of the digital material representation to strain localization prediction in the two phase titanium alloys for aerospace applications. Arch. Civ. Mech. Eng 16, 224–234 (2016)

    Article  Google Scholar 

  93. 93.

    Clemens, H., Mayer, S.: Intermetallic titanium aluminides in aerospace applications–processing, microstructure and properties. Mater. High Temp. 33(4–5), 560–570 (2016)

    CAS  Article  Google Scholar 

  94. 94.

    Williams, J.C., Boyer, R.R.: Opportunities and issues in the application of titanium alloys for aerospace components. Metals 10(6), 705 (2020)

    Article  Google Scholar 

  95. 95.

    Uhlmann, E., Kersting, R., Klein, T.B., Cruz, M.F., Borille, A.V.: Additive manufacturing of titanium alloy for aircraft components. Procedia Cirp 35, 55–60 (2015)

    Article  Google Scholar 

  96. 96.

    Peng, B.Y., Nie, X., Chen, Y.: Effects of surface coating preparation and sliding modes on titanium oxide coated titanium alloy for aerospace applications. Int. J. Aerosp. Eng. 2014, 1–10 (2014)

  97. 97.

    Sanders, D., Edwards, P., Grant, G., Ramulu, M., Reynolds, A.: Superplastically formed friction stir welded tailored aluminum and titanium blanks for aerospace applications. J. Mater. Eng. Perform. 19(4), 515–520 (2010)

    CAS  Article  Google Scholar 

  98. 98.

    Batool, S.A., Ahmad, A.K.H.L.A.Q., Wadood, A.B.D.U.L., Mateen, A.B.D.U.L. and Hussain, S.W.: Development of lightweight aluminum-titanium alloys for aerospace applications. In: Key Engineering Materials, Trans Tech Publications Ltd, vol. 778, pp. 22–27 (2018)

  99. 99.

    Gogia, A.K.: High-temperature titanium alloys. Def. Sci. J. 55(2), 149 (2005)

    CAS  Article  Google Scholar 

  100. 100.

    Ibrahim, K.S.: Carbon nanotubes-properties and applications: a review. Carbon Lett. 14(3), 131–144 (2013)

    Article  Google Scholar 

  101. 101.

    Gohardani, O., Elola, M.C., Elizetxea, C.: Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 70, 42–68 (2014)

    Article  Google Scholar 

  102. 102.

    Islam, M.S., Deng, Y., Tong, L., Faisal, S.N., Roy, A.K., Minett, A.I., Gomes, V.G.: Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: towards next generation aerospace composites and energy storage applications. Carbon 96, 701–710 (2016)

    CAS  Article  Google Scholar 

  103. 103.

    Rawal, S., Ravine, J., Czerw, R.: Graphene nanoplatelet membranes for aerospace applications. Nanotechnology 1, 411–414 (2011)

    CAS  Google Scholar 

  104. 104.

    Li, Z., Nambiar, S., Zheng, W., Yeow, J.T.W.: PDMS/single-walled carbon nanotube composite for proton radiation shielding in space applications. Mater. Lett. 108, 79–83 (2013)

    CAS  Article  Google Scholar 

  105. 105.

    Zhang, X., Chen, Y., Hu, J.: Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 97, 22–34 (2018)

    Article  Google Scholar 

  106. 106.

    Rosca, I.D., Hoa, S.V.: Method for reducing contact resistivity of carbon nanotube-containing epoxy adhesives for aerospace applications. Compos. Sci. Technol. 71(2), 95–100 (2011)

    CAS  Article  Google Scholar 

  107. 107.

    Jakubinek, M.B., Ashrafi, B., Zhang, Y., Martinez-Rubi, Y., Kingston, C.T., Johnston, A., Simard, B.: Single-walled carbon nanotube–epoxy composites for structural and conductive aerospace adhesives. Compos. B Eng. 69, 87–93 (2015)

    CAS  Article  Google Scholar 

  108. 108.

    Carreño-Morelli, E.: Carbon nanotube–metal matrix composites. In: The Dekker Encyclopedia of Nanoscience and Nanotechnologie. Taylor and Francis, New York, pp. 1–9 (2006)

  109. 109.

    Bellucci, S., Balasubramanian, C., Micciulla, F., Rinaldi, G.: CNT composites for aerospace applications. J. Exp. Nanosci. 2(3), 193–206 (2007)

    CAS  Article  Google Scholar 

  110. 110.

    Silvestre, N.: State-of-the-art review on carbon nanotube reinforced metal matrix composites. Int. J. Compos. Mater. 3(6), 28–44 (2013)

    Google Scholar 

  111. 111.

    Kamali, G., Ashokkumar, N., Sugash, K., Magesh, V.: Advanced composite materials of the future in aerospace engineering. Int. J. Res. Appl. Sci. Eng. Technol. 5(2), 610–614 (2017)

  112. 112.

    Dadkhah, M., Saboori, A., Fino, P.: An overview of the recent developments in metal matrix nanocomposites reinforced by graphene. Materials 12(17), 2823 (2019)

    CAS  Article  Google Scholar 

  113. 113.

    Arif, M., Asif, M., Ahmed, I.: Advanced composite material for aerospace application—a review. Int. J. Eng. Mfg. Sci 7(2), 393–409 (2017)

  114. 114.

    Chaudhary, G., Sharma, A.K., Bhardwaj, P., Kant, K., Kaushal, I., Mishra, A.K.: NiCo2O4 decorated PANI–CNTs composites as supercapacitive electrode materials. J. Energy Chem. 26(1), 175–181 (2017)

    Article  Google Scholar 

  115. 115.

    Sharma, A.K., Bhardwaj, P., Dhawan, S.K., Sharma, Y.: Oxidative synthesis and electrochemical studies of poly (aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor. Adv. Mater. Lett 6(5), 414–420 (2015)

    CAS  Article  Google Scholar 

  116. 116.

    Sharma, A.K., Chaudhary, G., Bhardwaj, P., Kaushal, I., Duhan, S.: Studies on metal doped polyaniline-carbon nanotubes composites for high performance supercapacitor. Curr. Anal. Chem. 13(4), 277–284 (2017)

    CAS  Article  Google Scholar 

  117. 117.

    Bhardwaj, P., Kaushik, S., Gairola, P., Gairola, S.P.: Polyaniline enfolded hybrid carbon array substrate electrode for high performance supercapacitors. J. Polym. Eng. 39(3), 228–238 (2019)

    CAS  Article  Google Scholar 

  118. 118.

    Bhardwaj, P., Grace, A.N.: Antistatic and microwave shielding performance of polythiophene-graphene grafted 3-dimensional carbon fibre composite. Diam. Relat. Mater. 106, 107871-80 (2020)

    CAS  Article  Google Scholar 

  119. 119.

    Kharangarh, P.R., Gupta, V., Singh, A., Bhardwaj, P., Grace, A.N.: An efficient pseudocapacitor electrode material with co-doping of iron (II) and sulfur in luminescent graphene quantum dots. Diam. Relat. Mater. 107, 107913 (2020)

    CAS  Article  Google Scholar 

  120. 120.

    Paul, A.M., Sajeev, A., Nivetha, R., Gothandapani, K., Bhardwaj, P., Govardhan, K., Raghavan, V., Jacob, G., Sellapan, R., Jeong, S.K., Grace, A.N.: Cuprous oxide (Cu2O)/graphitic carbon nitride (g-C3N4) nanocomposites for electrocatalytic hydrogen evolution reaction. Diam. Relat. Mater. 107, 107899 (2020)

    CAS  Article  Google Scholar 

  121. 121.

    Singh, B.P., Bharadwaj, P., Choudhary, V., Mathur, R.B.: Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites. Appl. Nanosci. 4(4), 421–428 (2014)

    CAS  Article  Google Scholar 

  122. 122.

    Kunze, J.M., Bampton, C.C.: Challenges to developing and producing MMCs for space applications. JOM 53(4), 22–25 (2001)

    CAS  Article  Google Scholar 

  123. 123.

    Katnam, K.B., Da Silva, L.F.M., Young, T.M.: Bonded repair of composite aircraft structures: a review of scientific challenges and opportunities. Prog. Aerosp. Sci. 61, 26–42 (2013)

    Article  Google Scholar 

  124. 124.

    Antolovich, S.D., Busso, E.P., Skelton, P., Telesman, J.: High temperature materials for aerospace applications. Mater. High Temp. 33(4–5), 289–290 (2016)

    Article  Google Scholar 

  125. 125.

    Larson, C., Smith, J.R., Armstrong, G.J.: Current research on surface finishing and coatings for aerospace bodies and structures–a review. Trans. IMF 91(3), 120–132 (2013)

    CAS  Article  Google Scholar 

  126. 126.

    Findlay, S.J., Harrison, N.D.: Why aircraft fail. Mater. Today 5(11), 18–25 (2002)

    CAS  Article  Google Scholar 

  127. 127.

    Liu, Z.Y., Zhao, K., Xiao, B.L., Wang, W.G., Ma, Z.Y.: Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing. Mater. Des. 97, 424–430 (2016)

    CAS  Article  Google Scholar 

  128. 128.

    Zare, H., Jahedi, M., Toroghinejad, M.R., Meratian, M., Knezevic, M.: Compressive, shear, and fracture behavior of CNT reinforced Al matrix composites manufactured by severe plastic deformation. Mater. Des. 106, 112–119 (2016)

    CAS  Article  Google Scholar 

  129. 129.

    Rikhtegar, F., Shabestari, S.G., Saghafian, H.: Microstructural evaluation and mechanical properties of Al-CNT nanocomposites produced by different processing methods. J. Alloy. Compd. 723, 633–641 (2017)

    CAS  Article  Google Scholar 

  130. 130.

    Habibi, M.K., Hamouda, A.M.S., Gupta, M.: Enhancing tensile and compressive strength of magnesium using ball milled Al+CNT reinforcement. Compos. Sci. Technol. 72(2), 290–298 (2012)

    CAS  Article  Google Scholar 

  131. 131.

    Yang, X., Shi, C., He, C., Liu, E., Li, J., Zhao, N.: Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites. Compos. A Appl. Sci. Manuf. 42(11), 1833–1839 (2011)

    Article  CAS  Google Scholar 

  132. 132.

    Liang, J., Li, H., Qi, L., Tian, W., Li, X., Chao, X., Wei, J.: Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. J. Alloys Compd. 728, 282–288 (2017)

    CAS  Article  Google Scholar 

  133. 133.

    Shimizu, Y., Miki, S., Soga, T., Itoh, I., Todoroki, H., Hosono, T., Sakaki, K., Hayashi, T., Kim, Y.A., Endo, M., Morimoto, S.: Multi-walled carbon nanotube-reinforced magnesium alloy composites. Scr. Mater. 58(4), 267–270 (2008)

    CAS  Article  Google Scholar 

  134. 134.

    Abazari, S., Shamsipur, A., Bakhsheshi-Rad, H.R., Ismail, A.F., Sharif, S., Razzaghi, M., Ramakrishna, S., Berto, F.: Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: a comprehensive review. Materials 13(19), 4421 (2020)

    CAS  Article  Google Scholar 

  135. 135.

    Jargalsaikhan, B., Bor, A., Lee, J., Choi, H.: Effect of different raw material property for the fabrication on Al/CNT nanocomposite using a ball mill with a discrete element method (DEM) simulation. Materials 12(20), 3291 (2019)

    CAS  Article  Google Scholar 

  136. 136.

    Riaz, H., Mnazoor, T., Raza, A.: Fabrication and characterization of AA6061/CNTs surface nanocomposite by friction stir processing. Int. J. Adv. Manuf. Technol. 105(1–4), 749–769 (2019)

    Article  Google Scholar 

  137. 137.

    Zheng, L., Sun, J., Chen, Q.: Carbon nanotubes reinforced copper composite with uniform CNT distribution and high yield of fabrication. Micro Nano Lett. 12(10), 722–725 (2017)

    CAS  Article  Google Scholar 

  138. 138.

    Kim, J.H., Lee, Y.R., Park, H.J., Kim, S., Jung, S.B.: Microstructures and thermal properties of Ag-CNT/Cu composites fabricated by friction stir welding. J. Mater. Sci. Mater. Electron. 31(3), 2280–2287 (2020)

    CAS  Article  Google Scholar 

  139. 139.

    Zheng, Y.F., Yao, X., Su, Y.J., Zhang, D.L.: Fabrication of an in-situ Ti-2.6 vol% TiC metal matrix composite by thermomechanical consolidation of a TiH2–1vol% CNTs powder blend. Mater. Sci. Eng. A 667, 300–310 (2016)

    CAS  Article  Google Scholar 

  140. 140.

    Esawi, A.M., Morsi, K., Sayed, A., Gawad, A.A., Borah, P.: Fabrication and properties of dispersed carbon nanotube–aluminum composites. Mater. Sci. Eng. A 508(1–2), 167–173 (2009)

    Article  CAS  Google Scholar 

  141. 141.

    Kim, H.H., Babu, J.S.S., Kang, C.G.: Fabrication of A356 aluminum alloy matrix composite with CNTs/Al2O3 hybrid reinforcements. Mater. Sci. Eng. A 573, 92–99 (2013)

    CAS  Article  Google Scholar 

  142. 142.

    Xiong, N., Bao, R., Yi, J., Fang, D., Tao, J., Liu, Y.: CNTs/Cu-Ti composites fabrication through the synergistic reinforcement of CNTs and in situ generated nano-TiC particles. J. Alloy. Compd. 770, 204–213 (2019)

    CAS  Article  Google Scholar 

  143. 143.

    Chen, B., Kondoh, K., Li, J.S., Qian, M.: Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in-situ alumina nanoparticles. Compos. B Eng. 183, 107691 (2020)

    CAS  Article  Google Scholar 

  144. 144.

    Liu, X.Q., Li, C.J., You, X., Xu, Z.Y., Li, X., Bao, R., Tao, J.M., Yi, J.H.: Size-dependent effects of Ti powders in the pure aluminum matrix composites reinforced by carbon nanotubes. J. Alloy. Compd. 823, 153824 (2020)

    CAS  Article  Google Scholar 

  145. 145.

    Park, Y., Cho, K., Park, I., Park, Y.: Fabrication and mechanical properties of magnesium matrix composite reinforced with Si coated carbon nanotubes. Procedia Eng. 10, 1446–1450 (2011)

    CAS  Article  Google Scholar 

  146. 146.

    Fukuda, H., Kondoh, K., Umeda, J., Fugetsu, B.: Fabrication of magnesium based composites reinforced with carbon nanotubes having superior mechanical properties. Mater. Chem. Phys. 127(3), 451–458 (2011)

    CAS  Article  Google Scholar 

  147. 147.

    Guo, B., Du, Y., Yan, N., Song, M.: Mechanical properties and microstructures of Al-10Mg-4.5 Si matrix composites reinforced by carbon nanotubes. J. Alloys Compd. 792, 860–868 (2019)

    CAS  Article  Google Scholar 

  148. 148.

    Yang, X., Zou, T., Shi, C., Liu, E., He, C., Zhao, N.: Effect of carbon nanotube (CNT) content on the properties of in-situ synthesis CNT reinforced Al composites. Mater. Sci. Eng. A 660, 11–18 (2016)

    CAS  Article  Google Scholar 

  149. 149.

    Mani, M.K., Viola, G., Reece, M.J., Hall, J.P., Evans, S.L.: Fabrication of carbon nanotube reinforced iron based magnetic alloy composites by spark plasma sintering. J. Alloy. Compd. 601, 146–153 (2014)

    CAS  Article  Google Scholar 

  150. 150.

    Dhore, V.G., Rathod, W.S., Patil, K.N.: Investigation of mechanical properties of carbon nanotubes reinforced aluminium composite by metal injection molding. Mater. Today Proc. 5(9), 20690–20698 (2018)

    CAS  Article  Google Scholar 

  151. 151.

    Munir, K.S., Zheng, Y., Zhang, D., Lin, J., Li, Y., Wen, C.: Improving the strengthening efficiency of carbon nanotubes in titanium metal matrix composites. Mater. Sci. Eng. A 696, 10–25 (2017)

    CAS  Article  Google Scholar 

  152. 152.

    Chen, X., Tao, J., Yi, J., Liu, Y., Bao, R., Li, C., Tan, S., You, X.: Enhancing the strength of carbon nanotubes reinforced copper matrix composites by optimizing the interface structure and dispersion uniformity. Diam. Relat. Mater. 88, 74–84 (2018)

    CAS  Article  Google Scholar 

  153. 153.

    Salimi, S., Izadi, H., Gerlich, A.P.: Fabrication of an aluminum–carbon nanotube metal matrix composite by accumulative roll-bonding. J. Mater. Sci. 46(2), 409–415 (2011)

    CAS  Article  Google Scholar 

  154. 154.

    Li, S., Sun, B., Imai, H., Mimoto, T., Kondoh, K.: Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite. Compos. A Appl. Sci. Manuf. 48, 57–66 (2013)

    CAS  Article  Google Scholar 

  155. 155.

    Nie, J., Jia, C., Jia, X., Zhang, Y., Shi, N., Li, Y.: Fabrication, microstructures, and properties of copper matrix composites reinforced by molybdenum-coated carbon nanotubes. Rare Met. 30(4), 401 (2011)

    CAS  Article  Google Scholar 

  156. 156.

    Singhal, S.K., Pasricha, R., Jangra, M., Chahal, R., Teotia, S., Mathur, R.B.: Carbon nanotubes: amino functionalization and its application in the fabrication of Al-matrix composites. Powder Technol. 215, 254–263 (2012)

    Article  CAS  Google Scholar 

  157. 157.

    Cao, L., Li, Z., Fan, G., Jiang, L., Zhang, D., Moon, W.J., Kim, Y.S.: The growth of carbon nanotubes in aluminum powders by the catalytic pyrolysis of polyethylene glycol. Carbon 50(3), 1057–1062 (2012)

    CAS  Article  Google Scholar 

  158. 158.

    Hanizam, H., Salleh, M.S., Omar, M.Z., Sulong, A.B.: Optimisation of mechanical stir casting parameters for fabrication of carbon nanotubes–aluminium alloy composite through Taguchi method. J. Mater. Res. Technol. 8(2), 2223–2231 (2019)

    CAS  Article  Google Scholar 

  159. 159.

    Liu, S.Y., Gao, F.P., Zhang, Q.Y., Xue, Z.H.U., Li, W.Z.: Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing. Trans. Nonferr. Metals Soc. China 20(7), 1222–1227 (2010)

    CAS  Article  Google Scholar 

  160. 160.

    Lopez, A.J., Urena, A., Rams, J.: Fabrication of novel sol–gel silica coatings reinforced with multi-walled carbon nanotubes. Mater. Lett. 64(8), 924–927 (2010)

    CAS  Article  Google Scholar 

  161. 161.

    Kim, I.Y., Lee, J.H., Lee, G.S., Baik, S.H., Kim, Y.J., Lee, Y.Z.: Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267(1–4), 593–598 (2009)

    CAS  Article  Google Scholar 

  162. 162.

    Larianovsky, N., Popov, V., Katz-Demyanetz, A., Fleisher, A., Meyers, D.E., Chaudhuri, R.S.: Production of Al metal matrix composites reinforced with carbon nanotubes by two-stage melt-based HPDC-CE method. J. Eng. Mater. Technol. 141(1), 011002-9 (2019)

  163. 163.

    Li, Y.J., Sun, X.W., Fan, J.W., Li, B.E., Cao, H.C., Liu, W., Li, H.P.: Fabrication and properties of magnesium matrix composite reinforced by carbon nanotubes-alumina hybrid reinforcements. Adv. Compos. Lett. 26(5), 1–6 (2017)

  164. 164.

    Munir, K.S., Li, Y., Qian, M., Wen, C.: Identifying and understanding the effect of milling energy on the synthesis of carbon nanotubes reinforced titanium metal matrix composites. Carbon 99, 384–397 (2016)

    CAS  Article  Google Scholar 

  165. 165.

    Anzawa, S., Takizawa, H., Tanimoto, T., Ogawa, A.: Development of high strength MWCNT reinforced titanium alloy matrix composites. In: The 11th World Conference on Titanium Program , vol. 149, pp. 1–4 (2007)

  166. 166.

    Stein, J., Lenczowski, B., Frety, N., Anglaret, E.: High-performance metal matrix composites reinforced by carbon nanotubes. In: Proceeding Book, ICCM, vol. 18, pp. 1–5 (2011)

  167. 167.

    Trinh, V.P., Luan, V.N., Phuong, D.D., Minh, P.N.: Mirostructure and microhardness of aluminum-copper composite reinforced with multi-walled carbon nanotubes prepared by vacuum sintering and hot isostatic pressing techniques. Sci. Sinter. 50(2), 163–171 (2018)

    Article  Google Scholar 

  168. 168.

    Salama, E.I., Abbas, A., Esawi, A.M.: Preparation and properties of dual-matrix carbon nanotube-reinforced aluminum composites. Compos. A Appl. Sci. Manuf. 99, 84–93 (2017)

    CAS  Article  Google Scholar 

  169. 169.

    Prater, T.: Friction stir welding of metal matrix composites for use in aerospace structures. Acta Astronaut. 93, 366–373 (2014)

    CAS  Article  Google Scholar 

  170. 170.

    Ferreira, L.M.P., Bayraktar, E., Miskioglu, I., Robert, M.H.: New magnetic aluminum matrix composites (Al–Zn–Si) reinforced with nano magnetic Fe3O4 for aeronautical applications. Adv. Mater. Process. Technol. 4(3), 358–369 (2018)

    Google Scholar 

  171. 171.

    Rubel, R.I., Ali, M.H., Jafor, M.A., Alam, M.M.: Carbon nanotubes agglomeration in reinforced composites: a review. AIMS Mater. Sci. 6(5), 756 (2019)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ponnusamy Palanisamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, V., Kunjiappan, S. & Palanisamy, P. A brief review of carbon nanotube reinforced metal matrix composites for aerospace and defense applications. Int Nano Lett (2021). https://doi.org/10.1007/s40089-021-00328-y

Download citation


  • Aerospace and defense applications
  • Carbon nanotubes
  • Metal matrix composite
  • Mechanical properties