A green chemical approach for synthesis of sponge-like mesoporous gamma alumina and evaluation of three parameters OH/Al, salt concentration and ageing time on BET and BJH properties


Synthetic strategies to control the properties of gamma-alumina mesoporous have been discussed. In this study, the emphasis is placed upon the effect of three parameters pH of the reaction, salt precursor concentration and ageing time on the pore structure of nanoparticles synthesized by precipitation method. The gamma alumina as the only phase was recognized due to the appearance of characteristic peaks based on standard data JCPDS 29-0063 card in XRD pattern. The samples were analyzed by BET and BJH analysis in terms of specific surface area and pore structure (size distribution, morphology, and total pore volume). The results showed that all the synthesized samples are mesoporous. The sample synthesized at a precursor concentration of 0.1 M and pH 8 and the ageing time of 48 h obtained the highest specific surface area (217.02 m2 g−1) among all samples, while the sample prepared at the precursor concentration 0.2 M and pH 8 showed the highest pore volume with a value of 0.31 cm3 g−1. Among the parameters, only pH altered the pore morphologies from spherical to cylindrical while the ageing time and salt concentration did not change the pore morphology of mesoporous alumina samples. The TEM image reveals the sponge-like morphology which implies the appearance of a highly inter-connected pore system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Saltarelli, M., de Faria, E.H., Ciuffi, K.J., Nassar, E.J., Trujillano, R., Rives, V., Vicente, M.A.: Aminoiron (III)–porphyrin–alumina catalyst obtained by non-hydrolytic sol–gel process for heterogeneous oxidation of hydrocarbons. Mol. Catal. 462, 114–125 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    Aghaeinejad-Meybodi, A., Ebadi, A., Shafiei, S., Khataee, A., Kiadehi, A.D.: Degradation of fluoxetine using catalytic ozonation in aqueous media in the presence of nano-γ-alumina catalyst: experimental, modeling and optimization study. Sep. Purif. Technol. 211, 551–563 (2019)

    CAS  Article  Google Scholar 

  3. 3.

    Yeom, Y., Li, M., Savara, A., Sachtler, W., Weitz, E.: An overview of the mechanisms of NOx reduction with oxygenates over zeolite and γ-Al2O3 catalysts. Catal. Today. 136, 55–63 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    Iris, K.M., Hanif, A., Tsang, D.C.W., Yip, A.C.K., Lin, K.-Y.A., Gao, B., Ok, Y.S., Poon, C.S., Shang, J.: Tailoring acidity and porosity of alumina catalysts via transition metal doping for glucose conversion in biorefinery. Sci. Total Environ. 704, 135414 (2020)

    Article  Google Scholar 

  5. 5.

    Mahinroosta, M., Allahverdi, A.: Production of nanostructured γ-alumina from aluminum foundry tailing for catalytic applications. Int. Nano Lett. 8, 255–261 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    Mirjalili, F., Hasmaliza, M., Abdullah, L.C.: Size-controlled synthesis of nano α-alumina particles through the sol–gel method. Ceram. Int. 36, 1253–1257 (2010)

    CAS  Article  Google Scholar 

  7. 7.

    Aljishi, A., Veilleux, G., Lalinde, J.A.H., Kopyscinski, J.: The effect of synthesis parameters on ordered mesoporous nickel alumina catalyst for CO2 methanation. Appl. Catal. A Gen. 549, 263–272 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    D’Aniello, M.J., Jr.: Anion adsorption on alumina. J. Catal. 69, 9–17 (1981)

    Article  Google Scholar 

  9. 9.

    Parida, K.M., Pradhan, A.C., Das, J., Sahu, N.: Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Mater. Chem. Phys. 113, 244–248 (2009)

    CAS  Article  Google Scholar 

  10. 10.

    Park, Y.K., Tadd, E.H., Zubris, M., Tannenbaum, R.: Size-controlled synthesis of alumina nanoparticles from aluminum alkoxides. Mater. Res. Bull. 40, 1506–1512 (2005)

    CAS  Article  Google Scholar 

  11. 11.

    Myronyuk, I.F., Mandzyuk, V.I., Sachko, V.M., Gun’ko, V.M.: Structural and morphological features of disperse alumina synthesized using aluminum nitrate nonahydrate. Nanosc. Res. Lett. 11, 1–8 (2016)

    Article  Google Scholar 

  12. 12.

    Shang, X., Wang, X., Nie, W., Guo, X., Zou, X., Ding, W., Lu, X.: Facile strategy for synthesis of mesoporous crystalline γ-alumina by partially hydrolyzing aluminum nitrate solution. J. Mater. Chem. 22, 23806–23814 (2012)

    CAS  Article  Google Scholar 

  13. 13.

    Macedo, M.I.F., Osawa, C.C., Bertran, C.A.: Sol–gel synthesis of transparent alumina gel and pure gamma alumina by urea hydrolysis of aluminum nitrate. J. Sol–Gel Sci. Technol. 30, 135–140 (2004)

    CAS  Article  Google Scholar 

  14. 14.

    Munhoz, A.H., de Paiva, H., de Miranda, L.F., De Oliveira, E.C., Andrades, R.C., Neto, A.C.: Synthesis and characterization of pseudoboehmite and gamma-alumina. Mater. Sci. Forum Trans. Tech. Publ. 820, 131–136 (2015)

  15. 15.

    Ghamari, M., Imani, A., Williams, J.F., Ghasemifard, M.: Aluminum oxyhydroxide-doped PMMA hybrids powder prepared via facile one-pot method towards copper ion removal from aqueous solution. Int. Nano Lett. 9, 317–325 (2019)

    CAS  Article  Google Scholar 

  16. 16.

    Dubey, S.P., Dwivedi, A.D., Sillanpää, M., Lee, H., Kwon, Y.-N., Lee, C.: Adsorption of As (V) by boehmite and alumina of different morphologies prepared under hydrothermal conditions. Chemosphere 169, 99–106 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    Yener, D.O., Guiselin, O., Bauer, R.: Applications of shaped nano alumina hydrate as barrier property enhancer in polymers, U.S. Patent 8,575,255, (2013)

  18. 18.

    Padmaja, P., Pillai, P.K., Warrier, K.G.K., Padmanabhan, M.: Adsorption isotherm and pore characteristics of nano alumina derived from sol-gel boehmite. J. Porous Mater. 11, 147–155 (2004)

    CAS  Article  Google Scholar 

  19. 19.

    Amir, N., Aswad, M.A., Al-dujaili, M.A.A.: Synthesis of gamma alumina for catalyst support using yeast cell as pore forming agent using regression model. J. Eng. Appl. Sci. 13, 9558–9563 (2018)

    Google Scholar 

  20. 20.

    Shen, T.F., Sun, Y.J.: A facile approach to synthesis and modification of nano-alumina. Adv. Mater. Res. Trans. Tech. Publ. 774, 646–649 (2013)

  21. 21.

    Jaymes, I., Douy, A., Massiot, D., Busnel, J.: Synthesis of a mullite precursor from aluminum nitrate and tetraethoxysilane via aqueous homogeneous precipitation: an 27Al and 29Si liquid- and solid-state NMR spectroscopic study. J. Am. Ceram. Soc. 78, 2648–2654 (1995)

    CAS  Article  Google Scholar 

  22. 22.

    Morgado, E., Lam, Y.L., Nazar, L.F.: Formation of peptizable boehmites by hydrolysis of aluminum nitrate in aqueous solution. J. Colloid Interface Sci. 188, 257–269 (1997)

    CAS  Article  Google Scholar 

  23. 23.

    Bagwell, R.B., Messing, G.L.: Critical factors in the production of sol–gel derived porous alumina. Key Eng. Mater. Trans. Tech. Publ. 115, 45–64 (1995)

  24. 24.

    Prakash, T., Prasad, K.P., Ramasamy, S., Murty, B.S.: Optical and electrical properties of mechanochemically synthesized nanocrystalline delafossite CuAlO2. J. Nanosci. Nanotechnol. 8, 4273–4278 (2008)

    CAS  Article  Google Scholar 

  25. 25.

    Sharma, P.K., Varadan, V.V., Varadan, V.K.: A critical role of pH in the colloidal synthesis and phase transformation of nano size α-Al2O3 with high surface area. J. Eur. Ceram. Soc. 23, 659–666 (2003)

    CAS  Article  Google Scholar 

  26. 26.

    Vaidya, S.D., Thakkar, N.V.: Effect of temperature, pH and ageing time on hydration of rho alumina by studying phase composition and surface properties of transition alumina obtained after thermal dehydration. Mater. Lett. 51, 295–300 (2001)

    CAS  Article  Google Scholar 

  27. 27.

    Xie, Y., Kocaefe, D., Kocaefe, Y., Cheng, J., Liu, W.: The effect of novel synthetic methods and parameters control on morphology of nano-alumina particlesitle. Nanosc. Res. Lett. 11, 1–11 (2016)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Misagh Ghamari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moghadam, T.M., Alizadeh, P., Ghamari, M. et al. A green chemical approach for synthesis of sponge-like mesoporous gamma alumina and evaluation of three parameters OH/Al, salt concentration and ageing time on BET and BJH properties. Int Nano Lett (2021). https://doi.org/10.1007/s40089-021-00327-z

Download citation


  • Alumina
  • Precursor
  • Surface area
  • Aluminum nitrate
  • Catalyst