Production of silver nanoparticles from Atalantia monophylla (L) plant resin and their enhanced antibacterial efficacy

Abstract

Bio-production of silver nanoparticles using plant biomolecules that possess potential applications is receiving much attention in current period. In the current research, Ag-NPs are synthesized using resin of Atalantia monophylla (L). The spectral and imaginable characters are analyzed using UV–vis spectrophotometer, Electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The resin-mediated silver nanoparticles are sphere-shaped as proved by scanning electron microscope image. The approximate estimation of reducing possibilities of the resin of Atalantia monophylla (L) plant indicated the existence of carbohydrates, phenols, alkaloids and protein. The synthesized Ag NPs reveal extensive antimicrobial activity against human bacterial pathogens viz., Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli, Enterobacter sp., and Staphylococcus aureus.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Jahn, W.: Review: chemical aspects of the use of gold clusters in structural biology. J. Struct. Biol. 127, 106 (1999)

    CAS  Article  Google Scholar 

  2. 2.

    Nalwa, H.S. (ed.): HandBook of Nanostructural Materials and Nanotechnology, pp. 1–5. Academic Press, New York (2000)

    Google Scholar 

  3. 3.

    Murphy, C.J.: Sustainability as an emerging design criterion in nanoparticle synthesis and applications. J Mater Chem. 18, 2173–2176 (2008)

    CAS  Article  Google Scholar 

  4. 4.

    Rotello, V.M.: Nanoparticles: building blocks for nanotechnology, p. 284. Kluwer Academic/Plenum Publishers, New York (2004)

    Google Scholar 

  5. 5.

    Rosi, N.L., Mirkin, C.A.: Nanostructures in biodiagnostics. Chem. Rev. 105(4), 1547–1562 (2005)

    CAS  Article  Google Scholar 

  6. 6.

    Colvin, V.L.: The potential environmental impact of engineered nanomaterials. Nat. Biotechnol. 21(10), 1166–1170 (2003)

    CAS  Article  Google Scholar 

  7. 7.

    Maynard, A.D., Aitken, R.J., Butz, T., Colvin, V., Donaldson, K., Oberdorster, G., Philbert, M.A., Ryan, R., Seaton, A., Stone, V., Tinkle, S.S., Tran, L., Walker, N.J., Warheit, D.B.: Safe handling of nanotechnology. Nature 444, 267–269 (2006)

    CAS  Article  Google Scholar 

  8. 8.

    Mariselvam, R., Ranjitsingh, A.J.A., Thamaraiselvi, C., Ignacimuthu, S.: Degradation of AZO dye using plants based silver nanoparticles through ultraviolet radiation. J. King Saud Univ. Sci. 31, 1363–1365 (2019)

    Article  Google Scholar 

  9. 9.

    Niemeyer, C.M.: Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem. Int. Ed. 40, 4128–4158 (2001)

    CAS  Article  Google Scholar 

  10. 10.

    Poole, C.P., Owens, F.J.: Introduction to nanotechnology, p. 388. John Wiley & Sons, Hoboken NJ (2003)

    Google Scholar 

  11. 11.

    Schmid, G.: Nanoparticles: from theory to application, 2nd edn., p. 522. Wiley-VCH, Weinheim (2010)

    Google Scholar 

  12. 12.

    Cao, G.: Nanostructures and nanomaterials: synthesis, properties and applications, p. 433. Imperial College Press, London (2004)

    Google Scholar 

  13. 13.

    Govindaraju, K., Tamilselvan, S., Kiruthiga, V., Shankaravelu, G.: Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J. Biopestic. 3, 394–399 (2010)

    CAS  Google Scholar 

  14. 14.

    Shankar, S.S., Rai, A., Ahamad, A., Sastry, M.: Rapid synthesis of Au, Ag and bimetallic Au core–Ag core shell nanoparticles using neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496–502 (2004)

    CAS  Article  Google Scholar 

  15. 15.

    Mariselvam, R., Ranjitsingh, A.J.A., Nanthini, A.U.R., Kalirajan, K., Padmalatha, C., Selvakumar, M.P.: Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 129, 537–541 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    Hashemi, S.F., Tasharrofi, N., Saber, M.M.: Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J. Mol. Struct. 1208, 127889 (2020)

    CAS  Article  Google Scholar 

  17. 17.

    Heikal, Y.M., Anca, S.N., Rizwan, M., Elsayed, A.: Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. Chemosphere 243, 125430 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    Fouda, M.M.G., Abdelsalam, N.R., El-Naggar, M.E., Zaitoun, A.F., Salim, B.M.A., Bin-Jumah, M., et al.: Impact of high throughput green synthesized silver nanoparticles on agronomic traits of onion. Int. J. Biol. Macromol. 149, 1304–1317 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    Jalilian, F., Chahardoli, A., Sadrjavadi, K., Fattahi, A., Shokoohinia, Y.: Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: characterization, antioxidant activities, antibacterial and cytotoxicity effects. Adv. Powder Technol. 31, 1323–1332 (2020)

    CAS  Article  Google Scholar 

  20. 20.

    David, L., Moldovana, B., Baldea, I., Olteanu, D., Bolfa, P., Clichici, S., Filip, G.A.: Modulatory effects of Cornus sanguinea L. mediated green synthesized silver nanoparticles on oxidative stress, COX-2/NOS2 and NFkB/pNFkB expressions in experimental inflammation in Wistar rats. Mater. Sci. Eng. C 110, 110709 (2020)

    CAS  Article  Google Scholar 

  21. 21.

    Ozturk, B.Y., Gursu, B.Y., Dag, I.: Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem. 89, 208–219 (2020)

    Article  Google Scholar 

  22. 22.

    Yadav, S., Sharma, S., Ahmad, F., Rathaur, S.: Antifilarial efficacy of green silver nanoparticles synthesized using Andrographis paniculata. J. Drug Deliv. Sci. Technol. 56, 101557 (2020)

    CAS  Article  Google Scholar 

  23. 23.

    Reddy, K.H., Sharma, P.V.G.K., Reddy, O.V.S.: A comparative invitro study on antifungal and antioxidant activities of Nervilia aragoana and Atlantia monophylla. Pharm. Biol. 48, 595–602 (2010)

    CAS  Article  Google Scholar 

  24. 24.

    Baia, L., Muresan, D., Baia, M., Popp, J., Simon, S.: Structural properties of silver nanoclusters-phosphate glass composites. Vib. Spectrosc. 43, 313–318 (2007)

    CAS  Article  Google Scholar 

  25. 25.

    He, R., Qian, X., Yin, Y., Zhu, Z.: Preparation of polychrome silver nanoparticles in different solvents. J. Mater. Chem. 12, 3783–3786 (2002)

    CAS  Article  Google Scholar 

  26. 26.

    Vanmathi, S.K., Sivakumar, T.: Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int. J. Curr. Microbiol. Appl. Sci. 1, 2319–7706 (2012)

    Google Scholar 

  27. 27.

    Odeniyi, M.A., Okumah, V.C., Adebayo-Tayo, B.C., Odeniyi, O.A.: Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain. Chem. Pharm. 15, 100197 (2020)

    Article  Google Scholar 

  28. 28.

    Dey, A., Mukhopadhyay, A.K., Gangadharan, S., Sinha, M.K., Basu, D.: Characterization of microplasma sprayed hydroxyapatite coating. J. Therm. Spray Technol. 18, 578–592 (2009)

    CAS  Article  Google Scholar 

  29. 29.

    Lin, P.C., Lin, S., Wang, P.C., Sridhar, R.: Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 32, 711–726 (2014)

    Article  Google Scholar 

  30. 30.

    Daniel, S.K., Vinothini, G., Subramanian, N., Nehru, K., Sivakumar, M.: Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J. Nanopart. Res. 15, 1319 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their sincere thanks to Xavier Research Foundation, St Xavier’s College for financial assistance.

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

All authors equally contributed this research work.

Corresponding author

Correspondence to R. Mariselvam.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mariselvam, R., Mariappan, A., Sivakavinesan, M. et al. Production of silver nanoparticles from Atalantia monophylla (L) plant resin and their enhanced antibacterial efficacy. Int Nano Lett 11, 85–91 (2021). https://doi.org/10.1007/s40089-021-00326-0

Download citation

Keywords

  • Antibacterial activity
  • Atalantia monophylla resin
  • Green synthesis
  • Silver nanoparticles