Comparison of electronic and thermoelectric properties of RhTiAs and RhTiSb in bulk and their [111] films

Abstract

Mechanical, electronic, and thermoelectric properties of the RhTiZ (Z = As, Sb) compounds and their [111] thin films have been calculated based on the DFT framework. The RhTiZ (Z = As, Sb) bulk structures have stability in the mechanical and thermodynamic viewpoints, with 1.1 eV and 0.98 eV energy gaps, respectively. Their thermoelectric behaviors referred to the proper ZT and power factor at high temperatures suitable for power generators. Most of the RhTiZ (Z = As, Sb) [111] films have a half-metallic nature, while the γ-phase cases have magnetic moments than others. The γ-phase RhTiSb has a suitable figure of merit and power factor for cooling applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    De Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50(25), 2024 (1983)

    Article  Google Scholar 

  2. 2.

    Helmholdt, R.B., De Groot, R.A., Mueller, F.M., Van Engen, P.G., Buschow, K.H.J.: Magnetic and crystallographic properties of several C1b type Heusler compounds. J. Magn. Magn. Mater. 43(3), 249–255 (1984)

    CAS  Article  Google Scholar 

  3. 3.

    Anjami, A., Boochani, A., Elahi, S.M., Akbari, H.: Ab-initio study of mechanical, half-metallic and optical properties of Mn2ZrX (X= Ge, Si) compounds. Results Phys. 7, 3522–3529 (2017)

    Article  Google Scholar 

  4. 4.

    Seema, K.: The effect of pressure and disorder on half-metallicity of CoRuFeSi quaternary heusler alloy. Intermetallics 110, 106478 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    Hanssen, K.E.H.M., Mijnarends, P.E., Rabou, L.P.L.M., Buschow, K.H.J.: Positron-annihilation study of the half-metallic ferromagnet NiMnSb: experiment. Phys. Rev. B 42(3), 1533 (1990)

    CAS  Article  Google Scholar 

  6. 6.

    Gupta, S., Suresh, K.G.: Review on magnetic and related properties of RTX compounds. J. Alloy. Compd. 618, 562–606 (2015)

    CAS  Article  Google Scholar 

  7. 7.

    Yin, M., Hasier, J., Nash, P.: A review of phase equilibria in Heusler alloy systems containing Fe, Co or Ni. J. Mater. Sci. 51(1), 50–70 (2016)

    CAS  Article  Google Scholar 

  8. 8.

    Jin, Y. (2017). Novel Half-Metallic and Spin-Gapless Heusler Compounds. Theses, Dissertations, and Student Research: Department of Physics and Astronomy. 37. https://digitalcommons.unl.edu/physicsdiss/37

  9. 9.

    Alijani, V., Winterlik, J., Fecher, G.H., Naghavi, S.S., Felser, C.: Quaternary half-metallic Heusler ferromagnets for spintronics applications. Phys. Rev. B 83(18), 184428 (2011)

    Article  Google Scholar 

  10. 10.

    Baral, M., Chakrabarti, A.: Half-metallicity versus symmetry in half-Heusler alloys based on Pt, Ni, and Co: An ab initio study. Phys. Rev. B 99(20), 205136 (2019)

    CAS  Article  Google Scholar 

  11. 11.

    Salimi, N., Boochani, A., Elahi, M., Nevis, Z.G.: Physical, electronic and thermoelectric properties of [001] surfaces of TiCoSb half-Heusler compound. Mater. Res. Express 6(8), 086414 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    Ma, J., Hegde, V.I., Munira, K., Xie, Y., Keshavarz, S., Mildebrath, D.T., Butler, W.H.: Computational investigation of half-Heusler compounds for spintronics applications. Phys. Rev. B 95(2), 024411 (2017)

    Article  Google Scholar 

  13. 13.

    Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012)

    CAS  Article  Google Scholar 

  14. 14.

    Kim, S., Aykol, M., Wolverton, C.: Surface phase diagram and stability of (001) and (111) LiM n 2 O 4 spinel oxides. Phys. Rev. B 92(11), 115411 (2015)

    Article  Google Scholar 

  15. 15.

    Wang, Y., Cheng, J., Behtash, M., Tang, W., Luo, J., Yang, K.: First-principles studies of polar perovskite KTaO 3 surfaces: structural reconstruction, charge compensation, and stability diagram. Phys. Chem. Chem. Phys. 20(27), 18515–18527 (2018)

    CAS  Article  Google Scholar 

  16. 16.

    Boochani, A., Nowrozi, B., Khodadadi, J., Solaymani, S., Jalali-Asadabadi, S.: Novel graphene-like Co2VAl (111): case study on magnetoelectronic and optical properties by first-principles calculations. J. Phys. Chem. C 121(7), 3978–3986 (2017)

    CAS  Article  Google Scholar 

  17. 17.

    Ştefan Ţ., et al. (2015) Ind. Eng. Chem. Res. 54(330, 8212–8218 (2015).

  18. 18.

    Zare, M., et al. Scientific reports 8 (1), 10870 (2018).

  19. 19.

    Ghodselahi, T., Vesaghi, M.A., Gelali, A., Zahrabi,H., Solaymani, S.: Morphology, optical and electrical properties of Cu–Ni nanoparticles in a-C:H prepared by co-deposition of RF-sputtering and RF-PECVD. Appl. Surf. Sci. 258(2), 727-731 (2011). https://www.sciencedirect.com/science/article/abs/pii/S0169433211012281

  20. 20.

    Achour, A., Islam, M., Solaymani, S., Vizireanu, S., Khalid Saeed, G.D.: Influence of plasma functionalization treatment and gold nanoparticles on surface chemistry and wettability of reactive-sputtered TiO2 thin films. Appl. Surf. Sci. 458, 678-685 (2018). https://www.sciencedirect.com/science/article/abs/pii/S0169433218320415

  21. 21.

    Dejam, L., Solaymani, S., Achour, A., Stach, S., Ţălu, S., Nezafat, N.B., Dalouji, V., Shokri, A.A., Ghaderi, A.: Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films. Chem. Phys. Lett. 719, 78–90 (2019)

  22. 22.

    Ţălu, S., Bramowicz, M., Kulesza, S., Ghaderi, A., Dalouji, V., Solaymani, S., Khalaj, Z.: Microstructure and micromorphology of Cu/Co nanoparticles: surface texture analysis. Elec Mater Lett 12(5), 580–588 (2016)

  23. 23.

    Rai, D.P, Sandeep, A., Anup Pradhan Sakhya, S., Sinha, T.P., Merabet, B., Musa Saad M.H.E., Khenata R., Boochani, A., Solaymani, S., Thapa, R.K.: Electronic and optical properties of cubic SrHfO3 at different pressures: a first principles study. Mater. Chem. Phys. 186, 620–626 (2017)

  24. 24.

    Schwarz, K., Blaha, P., Madsen, G.K.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1–2), 71–76 (2002)

    Article  Google Scholar 

  25. 25.

    Sjöstedt, E., Nordström, L., Singh, D.J.: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114(1), 15–20 (2000)

    Article  Google Scholar 

  26. 26.

    Koller, D., Tran, F., Blaha, P.: Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85(15), 155109 (2012)

    Article  Google Scholar 

  27. 27.

    Blaha, P., Schwarz, K., Madsen, G.K., Kvasnicka, D., Luitz, J.: WIEN2k: An augmented plane wave plus local orbital program for calculating crystal properties tech. University Vienna, Austria (2001)

    Google Scholar 

  28. 28.

    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008)

    Article  Google Scholar 

  29. 29.

    Madsen, G.K., Singh, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175(1), 67–71 (2006)

    CAS  Article  Google Scholar 

  30. 30.

    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Dal Corso, A.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  31. 31.

    Murnaghan, F.D.: The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30(9), 244 (1944)

    CAS  Article  Google Scholar 

  32. 32.

    Warburton, R.E., Iddir, H., Curtiss, L.A., Greeley, J.: Thermodynamic stability of low-and high-index spinel LiMn2O4 surface terminations. ACS Appl. Mater. Interfaces. 8(17), 11108–11121 (2016)

    CAS  Article  Google Scholar 

  33. 33.

    Zeier, W.G., Anand, S., Huang, L., He, R., Zhang, H., Ren, Z., Snyder, G.J.: Using the 18-electron rule to understand the nominal 19-electron half-Heusler NbCoSb with Nb vacancies. Chem. Mater. 29(3), 1210–1217 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    Shi, H., Ming, W., Parker, D.S., Du, M.H., Singh, D.J.: Prospective high thermoelectric performance of the heavily p-doped half-Heusler compound CoVSn. Phys. Rev. B 95(19), 195207 (2017)

    Article  Google Scholar 

  35. 35.

    Gui, X., Zhao, X., Sobczak, Z., Wang, C.Z., Klimczuk, T., Ho, K.M., Xie, W.: Ternary Bismuthide SrPtBi2: computation and experiment in synergism to explore solid-state materials. J. Phys.Chem. C 122(9), 5057–5063 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    Hamioud, F., Mubarak, A.A.: The mechanical, optoelectronic and thermoelectric properties of NiYSn (Y= Zr and Hf) alloys. Int. J. Mod. Phys. B 31(23), 1750170 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    Ozisik, H.B., Ateser, E., Ozisik, H., Colakoglu, K., Deligoz, E.: Ab-initio calculations on half-Heusler NiXSn (X= Zr, Hf) compounds: electronic and optical properties under pressure. Indian J. Phys. 91(7), 773–778 (2017)

    CAS  Article  Google Scholar 

  38. 38.

    Pugh SF (1954) XCII. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45: 823.

  39. 39.

    Slack, G.A.: Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34(2), 321–335 (1973)

    CAS  Article  Google Scholar 

  40. 40.

    Shindé, S.L., Goela, J.: High thermal conductivity materials, vol. 91. Springer, New York (2006)

    Google Scholar 

  41. 41.

    Reuter, K., Scheffler, M.: Composition, structure, and stability of RuO 2 (110) as a function of oxygen pressure. Phys. Rev. B 65(3), 035406 (2001)

    Article  Google Scholar 

  42. 42.

    Han, H., Gao, G.Y., Yao, K.L.: First-principles study on the half-metallicity of full-Heusler alloy Co2VGa (111) surface. J. Appl. Phys. 111(9), 093730 (2012)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Physics Research Center at Islamic Azad University Ardabil Branch, Iran.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bashir Nedaee-Shakarab.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azin-Sanjabod, M.R., Nedaee-Shakarab, B., Azizian-Kalandaragh, Y. et al. Comparison of electronic and thermoelectric properties of RhTiAs and RhTiSb in bulk and their [111] films. Int Nano Lett (2021). https://doi.org/10.1007/s40089-020-00325-7

Download citation

Keywords

  • DFT
  • Thermoelectric
  • RhTiZ (Z = As
  • Sb)
  • Thermodynamic phase diagram
  • Half-heuslers
  • Spintronic
  • Thin film