Synthesis and structural characterization of gold nanorods


Gold cylinders with nanometric dimensions were successfully synthesized and characterized by X-ray scattering and diffraction, transmission electron microscopy, dynamic light scattering, and ultraviolet–visible spectroscopy. A small change on the synthesis route led to a slower reaction, allowing better control over the dimensions of the nanorods. The structural characterization enabled the description of the parameters as a function of synthesis time as well as reliable quantification of molar concentrations. The fine-tuning of sizes is crucial for the optimization of the nanorods on specialized applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Cobley, C.M., Chen, J.Y., Cho, E.C., Wang, L.V., Xia, Y.N.: Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 40(1), 44–56 (2011)

    CAS  Article  Google Scholar 

  2. 2.

    Shnoudeh, A.J., Hamad, I., Abdo, R.W., Qadumii, L., Jaber, A.Y., Surchi, H.S., et al.: Chapter 15—synthesis, characterization, and applications of metal nanoparticles. In: Tekade, R.K. (ed.) Biomaterials and Bionanotechnology, pp. 527–612. Academic Press, Cambridge (2019)

    Google Scholar 

  3. 3.

    Rao, H.H., Xue, X., Wang, H.Q., Xue, Z.H.: Gold nanorod etching-based multicolorimetric sensors: strategies and applications. J. Mater. Chem. C. 7(16), 4610–4621 (2019)

    CAS  Article  Google Scholar 

  4. 4.

    Wang, Y.W., Zhou, X.J., Xu, C.L., Jin, Y., Li, B.X.: Gold nanorods as visual sensing platform for chiral recognition with naked eyes. Sci. Rep. 8, 1–9 (2018)

  5. 5.

    Meng, L.Q., Zhang, J.S., Li, H.Q., Zhao, W.W., Zhao, T.G.: Preparation and progress in application of gold nanorods. J. Nanomater. 2019. Article ID 4925702, 11 pages (2019)

  6. 6.

    Chon, J.W.M., Bullen, C., Zijlstra, P., Gu, M.: Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv. Func. Mater. 17(6), 875–880 (2007)

    CAS  Article  Google Scholar 

  7. 7.

    Morasso, C., Picciolini, S., Domitilla, S., Mehn, D., Ojea-Jimenez, I., Zanchetta, G., et al.: Control of size and aspect ratio in hydroquinone-based synthesis of gold nanorods. J. Nanoparticle Res. 17:330, 1–7 (2015)

  8. 8.

    Khan, Z., Singh, T., Hussain, J.I., Hashmi, A.A.: Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles. Colloids Surfaces B-Biointerfaces. 104, 11–17 (2013)

    CAS  Article  Google Scholar 

  9. 9.

    Oliveira, C.L.P.: Investigating macromolecular complexes in solution by small angle X-ray scattering. In: Chandrasekaran, D.A. (ed.) Current Trends in X-ray Crystallography, pp. 367–392. InTech, London (2011)

    Google Scholar 

  10. 10.

    Ross, D.A., Dimas, N.: Particle sizing by dynamic light-scattering—noise and distortion in correlation data. Part. Part. Syst. Char. 10(2), 62–69 (1993)

    CAS  Article  Google Scholar 

  11. 11.

    Eimer, W., Pecora, R.: Rotational and translational diffusion of short rodlike molecules in solution—oligonucleotides. J. Chem. Phys. 94(3), 2324–2329 (1991)

    CAS  Article  Google Scholar 

  12. 12.

    Tirado, M.M., Martinez, C.L., Delatorre, J.G.: Comparison of theories for the translational and rotational diffusion-coefficients of rod-like macromolecules—application to short DNA fragments. J. Chem. Phys. 81(4), 2047–2052 (1984)

    Article  Google Scholar 

  13. 13.

    Van Rossum, G., Drake, F.L.: Python 3.6 Reference Manual. CreateSpace, Scotts Valley (2009)

    Google Scholar 

  14. 14.

    Huang, L.K., Wang, M.J.J.: Image thresholding by minimizing the measures of fuzziness. Pattern Recogn. 28(1), 41–51 (1995)

    Article  Google Scholar 

  15. 15.

    van der Walt, S., Schonberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., et al.: scikit-image: image processing in Python. Peerj. 2, e453 (2014)

  16. 16.

    McKinney, Wa.: Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd edn. O'Reilly Media. ISBN: 9789351100065

  17. 17.

    Garcia, P., Prymak, O., Grasmik, V., Pappert, K., Wlysses, W., Otubo, L., et al.: An in situ SAXS investigation of the formation of silver nanoparticles and bimetallic silver–gold nanoparticles in controlled wet-chemical reduction synthesis. Nanosc. Adv. 2(1), 225–238 (2020)

    CAS  Article  Google Scholar 

  18. 18.

    Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods. 17(3), 261–272 (2020)

    CAS  Article  Google Scholar 

  19. 19.

    Glatter, O.: New method for evaluation of small-angle scattering data. J. Appl. Crystallogr. 10(OCT1), 415–421 (1977)

    Article  Google Scholar 

  20. 20.

    Pedersen, J.S.: Model-independent determination of the surface scattering-length-density profile from specular reflectivity data. J. Appl. Crystallogr. 25, 129–145 (1992)

    Article  Google Scholar 

  21. 21.

    Oliveira, C.L.P., Behrens, M.A., Pedersen, J.S., et al.: A SAXS study of glucagon fibrillation. J. Mol. Biol. 387(1), 147–161 (2009)

    CAS  Article  Google Scholar 

  22. 22.

    Glatter, O.: Determination of particle-size distribution-functions from small-angle scattering data by means of the indirect transformation method. J. Appl. Crystallogr. 13(1), 7–11 (1980)

    CAS  Article  Google Scholar 

  23. 23.

    Lindner, P., Zemb, T.: Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter. Elsevier, Amsterdam (2002)

    Google Scholar 

  24. 24.

    Kinning, D.J., Thomas, E.L.: Hard-sphere interactions between spherical domains in Diblock copolymers. Macromolecules 17(9), 1712–1718 (1984)

    CAS  Article  Google Scholar 

  25. 25.

    Guinier, A., Fournet, G., Yudowitch, K.L.: Small-angle scattering of X-rays. New York, Wiley (1955)

  26. 26.

    Glatter, O., Kratky, O.: Small Angle X-ray Scattering. Academic Press, London (1982)

    Google Scholar 

  27. 27.

    da Silva, J.A., Dias, R.P., da Hora, G.C.A., Soares, T.A., Meneghetti, M.R.: Molecular dynamics simulations of cetyltrimethylammonium bromide (CTAB) micelles and their interactions with a gold surface in aqueous solution. J. Braz. Chem. Soc. 29(1), 191–199 (2018)

    Google Scholar 

  28. 28.

    Pelton, M., Aizpurua, J., Bryant, G.: Metal-nanoparticle plasmonics. Laser Photonics Rev. 2(3), 136–159 (2008)

    CAS  Article  Google Scholar 

  29. 29.

    Encina, E.R., Coronado, E.A.: Resonance conditions for multipole plasmon excitations in noble metal nanorods. J. Phys. Chem. C. 111(45), 16796–16801 (2007)

    CAS  Article  Google Scholar 

  30. 30.

    Amendola, V., Pilot, R., Frasconi, M., Maragò, O.M., Iatì, M.A.: Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condensed Matter. 29(20), 203002 (2017)

    Article  Google Scholar 

  31. 31.

    Eustis, S., El-Sayed, M.A.: Determination of the aspect ratio statistical distribution of gold nanorods in solution from a theoretical fit of the observed inhomogeneously broadened longitudinal plasmon resonance absorption spectrum. J. Appl. Phys. 100(4), 044324 (2006)

    Article  Google Scholar 

  32. 32.

    Goyal, P.S., Dasannacharya, B.A., Kelkar, V.K., Manohar, C., Rao, K.S., Valaulikar, B.S.: Shapes and sizes of micelles in ctab solutions. Phys. B 174(1–4), 196–199 (1991)

    CAS  Article  Google Scholar 

  33. 33.

    Garcia, P.R.A.F.: Rotas de síntese e métodos de caracterização estrutural para sistemas de nanopartículas metálicas. Universidade de São Paulo, São Paulo (2020)

    Google Scholar 

  34. 34.

    Sau, T.K., Murphy, C.J.: Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20(15), 6414–6420 (2004)

    CAS  Article  Google Scholar 

Download references


This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-2018/16092-5, 2016/24531-3), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-303001/2019-4) e Instituto Nacional de Ciência e Tecnologia em Fluidos Complexos, INCT-FCx.

Author information



Corresponding author

Correspondence to Cristiano Luis Pinto Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1283 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garcia, P.R.A.F.R., Araujo, W.W.R., Teobaldo, G.B.M. et al. Synthesis and structural characterization of gold nanorods. Int Nano Lett 11, 59–68 (2021).

Download citation


  • Gold nanorods
  • Synthesis
  • Structural characterization