Numerical investigation of second law analysis of PGGNP/H2O nanofluid in various converging pipes

Abstract

This paper studies entropy production rate of propylene glycol-treated graphene nanoplatelet-based water (PGGNP-water) nanofluid flowing through three converging pipes (linear, Bessel and exponential) in laminar flow regime using computational fluid dynamics. The simulation is performed for range of Reynolds number \(\left( {400 \le Re \le 1600} \right)\) and nanoparticle concentration \(\left( {0\% \le \varphi \le 0.1\% } \right)\). The effect of Reynolds number and nanoparticle concentration were investigated on entropy production rates and Bejan number. The result showed that thermal entropy production rate of nanofluid in converging pipes was lower compared with straight pipes. In addition, increase in Reynolds number enhances viscous entropy production rate but decreases thermal entropy production rate. Furthermore, increase in nanoparticle concentration by 0.1% enhanced the viscous entropy production rate by a factor of 48.93 and reduced the thermal entropy production rate by 18.69%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Abbreviations

\(A_{{\text{s}}}\) :

Surface area (m2)

Be :

Bejan number

\(c_{{\text{p}}}\) :

Specific heat capacity at constant pressure (J/kg K)

D h :

Diameter of the pipe (m)

\(f\) :

Friction factor

\(h\) :

Coefficient of heat transfer (W/m2 K)

\(\dot{m}\) :

Mass flow rate

\(Nu\) :

Nusselt number

\(Pr\) :

Prandtl number of base fluid

Re :

Reynolds number

\(S\) :

Entropy production

\(T_{{}}\) :

Temperature of base fluid (K)

u r, u x :

Component velocity (m/s)

\(u_{{{\text{in}}}}\) :

Inlet velocity

\(r\left( x \right)\) :

Axial radius

\(R\) :

Radius

\(\alpha\) :

Thermal diffusivity (m2/s)

\(\lambda\) :

Thermal conductivity (W/m K)

μ :

Dynamic viscosity (kg/ms)

\(\varphi\) :

Nanoparticle volume fraction (%)

ρ :

Density of base fluid (kg/m3)

\(\Delta P\) :

Pressure drop

bulk:

Bulk

f:

Base fluid

gen:

Total

in:

Inlet

out:

Outlet

nf:

Nanofluid

p:

Nanoparticle

con:

Convergent

str:

Straight

ther:

Thermal

vis:

Viscous

\(^{\prime \prime \prime}\) :

Volumetry

References

  1. 1.

    Fadodun, O.G., Amosun, A.A., Salau, A.O., Ogundeji, J.A.: Numerical investigation of thermal performance of single-walled carbon nanotube nanofluid under turbulent flow conditions. Eng. Rep. 1, e12024 (2019)

    CAS  Google Scholar 

  2. 2.

    Fadodun, O.G., Amosun, A.A., Salau, A.O., Olaloye, D.O., Ogundeji, J.O., Ibitoye, F.I., Balogun, F.A.: Numerical investigation and sensitivity analysis of turbulent heat transfer and pressure drop of Al2O3/H2O nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 41(2020), 3–30 (2020)

    CAS  Google Scholar 

  3. 3.

    Ghaneifar, M., Raisi, A., Ali, H.M., Talebizadehsardari, P. Mixed convection heat transfer of Al2O3 nanofluid in a horizontal channel subjected with two heat sources. J. Therm. Anal. Calorim. 1–14 (2020)

  4. 4.

    Samaha, M.A., Kahwaji, G.Y. Passively enhancing convection heat transfer around cylinder using shrouds. In: APS Meeting Abstracts (2017)

  5. 5.

    Rashidi, S., Eskandarian, M., Mahian, O., Poncet, S.J.J.O.T.A.: Combination of nanofluid and inserts for heat transfer enhancement. J. Therm. Anal. Calorim. 135(1), 437–460 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    Al-Sammarraie, A.T., Vafai, K.: Heat transfer augmentation through convergence angles in a pipe. Numer. Heat Transfer Part A Appl. 72(3), 197–214 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    Lakshmans, K., Rajesh, D. Fluid flow and heat transfer analysis in a converging pipe using Al2O3-water nanofluid. J. Emerg. Technol. Innov. Res. 5(5) (2018)

  8. 8.

    Anvari, A., Javaherdeh, K., Emami-Meibodi, M.: Performance evaluation of a new nano fluid through micro channels heat exchanger. Chem. Eng. Trans. 71, 973–978 (2018)

    Google Scholar 

  9. 9.

    Salman, S.D.: Comparative study on heat transfer enhancement of nanofluids flow in ribs tube using CFD simulation. Heat Transf. Asian Res. 48(1), 148–163 (2019)

    Article  Google Scholar 

  10. 10.

    Xie, Y., Zheng, L., Zhang, D., Xie, G.: Entropy generation and heat transfer performances of Al2O3-water nanofluid transitional flow in rectangular channels with dimples and protrusions. Entropy 18(4), 148 (2016)

    Article  CAS  Google Scholar 

  11. 11.

    Manca, O., Nardini, S., Ricci, D., Tamburrino, S.: Numerical investigation on mixed convection in triangular cross-section ducts with nanofluids. Adv. Mech. Eng. 4, 139370 (2012)

    Article  CAS  Google Scholar 

  12. 12.

    Al-Sammarraie, A.T., Al-Jethelah, M., Salimpour, M.R., Vafai, K.: Nanofluids transport through a novel concave/convex convergent pipe. Numer. Heat Transf. Part A Appl. 75(2), 91–109 (2019)

    CAS  Article  Google Scholar 

  13. 13.

    Muhammed, N., Sidik, C.A.: Utilization of nanofluids in minichannel for heat transfer and fluid flow augmentation. Concise Res. Design. 1(1), 18–29 (2018)

    Google Scholar 

  14. 14.

    Bejan, A., Tsatsaronis, G., Moran, M., Moran, M.J.: Thermal design and optimization. Wiley, New York (1996)

    Google Scholar 

  15. 15.

    Azadi, M., Hosseinirad, E., Hormozi, F., Rashidi, S.: Second law analysis for nanofluid flow in mini-channel heat sink with finned surface: a study on fin geometries. J. Therm. Anal. Calorim. 140, 1–13 (2019)

    Google Scholar 

  16. 16.

    Akbarzadeh, M., Rashidi, S., Esfahani, J.A.: Influences of corrugation profiles on entropy generation, heat transfer, pressure drop, and performance in a wavy channel. Appl. Therm. Eng. 116, 278–291 (2017)

    Article  Google Scholar 

  17. 17.

    Manay, E., Akyürek, E.F., Sahin, B.: Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys. 9, 615–624 (2018)

    Article  Google Scholar 

  18. 18.

    Butt, A.S., Maqbool, K., Imran, S.M., Ahmad, B.: Entropy generation effects in MHD Casson nanofluid past a permeable stretching surface. Int. J. Exergy 31(2), 150–171 (2020)

    Article  Google Scholar 

  19. 19.

    Mahian, O., Kianifar, A., Sahin, A.Z., Wongwises, S.: Entropy generation during Al2O3/water nanofluid flow in a solar collector: effects of tube roughness, nanoparticle size, and different thermophysical models. Int. J. Heat Mass Transf. 78, 64–75 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    Ahmed, M.A., Mohammed, M.K. Numerical study on thermal-hydraulic performance and entropy generation of nanofluid flow in channel with oval baffles. In: 2018 11th International Conference on Developments in eSystems Engineering (DeSE), pp. 312–317. IEEE (2018)

  21. 21.

    Benzema, M., Benkahla, Y.K., Boudiaf, A., Ouyahia, S.E., El Ganaoui, M. Entropy generation due to the mixed convection flow of MWCNT−MgO/water hybrid nanofluid in a vented complex shape cavity. In: MATEC Web of Conferences, vol. 307, p. 01007. EDP Sciences (2020)

  22. 22.

    Ozalp, C.: Entropy generation for nonisothermal fluid flow: variable thermal conductivity and viscosity case. Adv. Mech. Eng. 5, 797894 (2013)

    Article  CAS  Google Scholar 

  23. 23.

    Bahaidarah, H.M.: Entropy generation during fluid flow in sharp edge wavy channels with horizontal pitch. Adv. Mech. Eng. 8(8), 1687814016660929 (2016)

    Article  CAS  Google Scholar 

  24. 24.

    Pal, R.: Entropy production in pipeline flow of dispersions of water in oil. Entropy 16(8), 4648–4661 (2014)

    Article  CAS  Google Scholar 

  25. 25

    Fadodun, O.G., Amosun, A.A., Okoli, N.L., Olaloye, D.A., Ogundeji, J.A., Durodola, S.S.: Numerical investigation of entropy production in SWCNT/H2O nanofluid flowing through inwardly corrugated tube in turbulent flow regime. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09589-9

    Article  Google Scholar 

  26. 26.

    Fadodun, O.G., Amosun, A.A., Okoli, N.L., Olaloye, D.O., Solomon, S.D., Ogundeji, J.A.: Sensitivity analysis of entropy production in Al2O3/H2O nanofluid through converging pipe. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-09163-y

    Article  Google Scholar 

  27. 27.

    Fadodun, O.G., Olokuntoye, B.A., Salau, A.O., Amosun, A.A.: Numerical investigation and sensitivity analysis of entropy production in Al2O3/H2O nanofluid in straight pipe using response surface methodology. Arch. Thermodyn. 42(2020), 3–30 (2020)

    Google Scholar 

  28. 28.

    Fadodun, O.G., Amosun, A.A., Ogundeji, J.A., Olaloye, D.O.: Numerical investigation of thermal efficiency and pumping power of Al2O3/H2O nanofluid in pipe using response surface methodology. J. Nanofluids 8(7), 1566–1576 (2019)

    Article  Google Scholar 

  29. 29.

    Shadlaghani, A., Barhemmati-Rajab, N., Zhao, W.: Exergy analysis of the alumina nanofluid through a ribbed annular channel. In: ASTFE Digital Library. Begel House Inc., New York (2019)

    Google Scholar 

  30. 30.

    Han, D., Meng, Z., Wu, D., Zhang, C., Zhu, H.: Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res. Lett. 6(1), 457 (2011)

    Article  CAS  Google Scholar 

  31. 31.

    Solangi, K.H., Amiri, A., Luhur, M.R., Ghavimi, S.A.A., Zubir, M.N.M., Kazi, S.N., Badarudin, A.: Experimental investigation of the propylene glycol-treated graphene nanoplatelets for the enhancement of closed conduit turbulent convective heat transfer. Int. Commun. Heat Mass Transf. 73, 43–53 (2016)

    CAS  Article  Google Scholar 

  32. 32

    Saha, G., Paul, M.C.: Heat transfer and entropy generation of turbulent forced convection flow of nanofluids in a heated pipe. Int. Commun. Heat Mass Transf 61(2015), 15–30 (2015). (ISSN: 0735-1933)

    Google Scholar 

  33. 33.

    Churchill, S.W.: Friction factor equation spans all fluid-flow regime. J. Chem. Eng. 84(24), 91–91 (1997)

    Google Scholar 

  34. 34.

    Ji, Y., Zhang, H.C., Yang, X., Shi, L.: Entropy generation analysis and performance evaluation of turbulent forced convective heat transfer to nanofluids. Entropy. 19(3), 108–116 (2017)

    Article  CAS  Google Scholar 

  35. 35.

    Ratts, E.B., Raut, A.G.: Entropy generation minimization of fully developed internal flow with constant heat flux. J. Heat Transf. 126(4), 656–659 (2004)

    Article  Google Scholar 

  36. 36.

    Shah, R.K., London, A.L.: Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic Press, New York (2014)

    Google Scholar 

  37. 37.

    Fluent Inc.: Fluent 14.0 theory guide. Fluent Inc., Pittsburgh (2012)

    Google Scholar 

  38. 38.

    Andreozzi, A., Manca, O., Nardini, S., Ricci, D.: Forced convection enhancement in channels with transversal ribs and nanofluids. Appl. Therm. Eng. 98, 1044–1053 (2016)

    CAS  Article  Google Scholar 

  39. 39.

    Nadila, N.I., Lazim, T.M., Mat, S. Verification of heat transfer enhancement in tube with spiral corrugation. In: AIP Conference Proceedings, vol. 2062, no. 1, p. 020032. AIP Publishing (2019)

  40. 40.

    Wen, D., Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47(24), 5181–5188 (2004)

    CAS  Article  Google Scholar 

  41. 41.

    Vigdorovich, I.: Turbulent thermal boundary layer on a plate. Reynolds analogy and heat transfer law over the entire range of Prandtl numbers. J. Fluid Dyn. 52(1), 631–645 (2017)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adefope Adeyanju Owojori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Owojori, A.A., Olokuntoye, B.A. & Fadodun, O.G. Numerical investigation of second law analysis of PGGNP/H2O nanofluid in various converging pipes. Int Nano Lett (2021). https://doi.org/10.1007/s40089-020-00321-x

Download citation

Keywords

  • Thermal entropy
  • Viscous entropy
  • Nanofluid
  • Reynolds number
  • Converging pipe
  • Bejan number
  • Heat transfer