Abstract
Green synthesis of nanoparticles has attracted significant attention as an alternative to chemical synthesis procedure. The bulk availability of plants, microbial biomass and the use of eco-friendly solvents has significantly reduced the cost in addition to the hazards associated with the chemical synthesis of the nanoparticle. In this study, we demonstrated the biosynthesis of titanium nanoparticles (TiO2NPs) with the extract of Trichoderma citrinoviridae as a reducing agent. The physicochemical properties of biogenic TiO2NPs were studied using FESEM, Zeta sizer, FTIR and XRD. The size (10–400 nm), morphology, crystallinity, zeta potential (29.5 mV), and polydispersity index (0.327) suggested that the biogenic TiO2NPs were polymorphic, crystalline and stable. FESEM revealed that the synthesized TiO2NPs were majorly irregular, and some interesting TiO2NPs structures, i.e., triangular, pentagonal, spherical and rod were also observed. The biogenic TiO2NPs showed excellent antibacterial activity (100 µg/mL) against planktonic cells of extremely drug-resistant (XDR) Pseudomonas aeruginosa clinical isolates. The TiO2NPs also had better antioxidant potential as compared to standard gallic acid. This study indicates the use of T. citrinoviridae for synthesizing biogenic TiO2NPs and their potential use against XDR bacteria.
Graphic abstract

This is a preview of subscription content, access via your institution.







References
- 1.
Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., Kumar, P.: “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. (2018). https://doi.org/10.1186/s12951-018-0408-4
- 2.
Raveendran, P., Fu, J., Wallen, S.L.: Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125, 13940–13941 (2003). https://doi.org/10.1021/ja029267j
- 3.
Feroze, N., Arshad, B., Younas, M., Afridi, M.I., Saqib, S., Ayaz, A.: Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc. Res. Tech. 83, 72–80 (2020). https://doi.org/10.1002/jemt.23390
- 4.
Kadam, V.V., Ettiyappan, J.P., Mohan Balakrishnan, R.: Mechanistic insight into the endophytic fungus mediated synthesis of protein capped ZnO nanoparticles. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 243, 214–221 (2019). https://doi.org/10.1016/j.mseb.2019.04.017
- 5.
Naimi-Shamel, N., Pourali, P., Dolatabadi, S.: Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. Mycol. Med. 29, 7–13 (2019). https://doi.org/10.1016/j.mycmed.2019.01.005
- 6.
Gopinath, K., Karthika, V., Sundaravadivelan, C., Gowri, S., Arumugam, A.: Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J. Nanostruct. Chem. 5, 295–303 (2015). https://doi.org/10.1007/s40097-015-0161-2
- 7.
Subhapriya, S., Gomathipriya, P.: Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb. Pathog. 116, 215–220 (2018). https://doi.org/10.1016/j.micpath.2018.01.027
- 8.
Cuevas, R., Durán, N., Diez, M.C., Tortella, G.R., Rubilar, O.: Extracellular biosynthesis of copper and copper oxide nanoparticles by stereum hirsutum, a native white-rot fungus from chilean forests. J. Nanomater. 2015, 1–7 (2015). https://doi.org/10.1155/2015/789089
- 9.
Salvadori, M.R., Ando, R.A., Oller Do Nascimento, C.A., Corrêa, B.: Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst Environ. Eng. 49, 1286–1295 (2014). https://doi.org/10.1080/10934529.2014.910067
- 10.
Devi, T.P., Kulanthaivel, S., Kamil, D., Borah, J.L., Prabhakaran, N., Srinivasa, N.: Biosynthesis of silver nanoparticles from Trichoderma species. (2013)
- 11.
Ahluwalia, V., Kumar, J., Sisodia, R., Shakil, N.A., Walia, S.: Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind. Crops Prod. 55, 202–206 (2014). https://doi.org/10.1016/j.indcrop.2014.01.026
- 12.
Elgorban, A.M., Al-Rahmah, A.N., Sayed, S.R., Hirad, A., Mostafa, A.A.-F., Bahkali, A.H.: Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol. Biotechnol. Equip. 30, 299–304 (2016). https://doi.org/10.1080/13102818.2015.1133255
- 13.
Tripathi, R.M., Gupta, R.K., Singh, P., Bhadwal, A.S., Shrivastav, A., Kumar, N., Shrivastav, B.R.: Ultra-sensitive detection of mercury(II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sensors Actuators B Chem. 204, 637–646 (2014). https://doi.org/10.1016/j.snb.2014.08.015
- 14.
Joost, U., Juganson, K., Visnapuu, M., Mortimer, M., Kahru, A., Nõmmiste, E., Joost, U., Kisand, V., Ivask, A.: Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J. Photochem. Photobiol. B Biol. 142, 178–185 (2015). https://doi.org/10.1016/j.jphotobiol.2014.12.010
- 15.
Nasrollahzadeh, M., Sajadi, S.M.: Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradena Jaub root extract and evaluation of their stability. Ceram. Int. 41, 14435–14439 (2015). https://doi.org/10.1016/j.ceramint.2015.07.079
- 16.
Hajar, O.S., Abd Salam, N.R., Zainal, N., Kadir, B.R., Talib, R.A.: Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. J. Photoenergy Int (2014). https://doi.org/10.1155/2014/945930
- 17.
Singh, A.K., Rathod, V.J., Singh, D., Ninganagouda, S., Kulkarni, P., Mathew, J., Haq, M. ul: Bioactive Silver Nanoparticles from Endophytic Fungus Fusarium sp. Isolated from an Ethanomedicinal Plant Withania somnifera (Ashwagandha) and its Antibacterial Activity, (2015)
- 18.
Weinstein, M.P., Lewis, J.S.: The clinical and laboratory standards institute subcommittee on Antimicrobial susceptibility testing: background, organization, functions, and processes. J. Clin. Microbiol. (2020). https://doi.org/10.1128/JCM.01864-19
- 19.
Arya, S.S., Sharma, M.M., Das, R.K., Rookes, J., Cahill, D., Lenka, S.K.: Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon. 5, e02021 (2019). https://doi.org/10.1016/j.heliyon.2019.e02021
- 20.
Dosunmu, E., Chaudhari, A.A., Singh, S.R., Dennis, V.A., Pillai, S.R.: Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. Int. J. Nanomed. 10, 5025–5034 (2015). https://doi.org/10.2147/IJN.S85219
- 21.
Santhoshkumar, T., Rahuman, A.A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A.V., Velayutham, K., Thomas, J., Venkatesan, J., Kim, S.K.: Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac. J. Trop. Med. 7(12), 968–976 (2014)
- 22.
Siddiquee, S.: Practical handbook of the biology and molecular diversity of trichoderma species from tropical regions. Springer International Publishing, Cham (2017)
- 23.
Popov, A.P., Lademann, J., Priezzhev, A.V., Myllylä, R.: Effect of size of TiO[sub 2] nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J. Biomed. Opt. 10, 064037 (2005). https://doi.org/10.1117/1.2138017
- 24.
Slavin, Y.N., Asnis, J., Häfeli, U.O., Bach, H.: Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol (2017). https://doi.org/10.1186/s12951-017-0308-z
- 25.
Wang, Y., Li, L., Huang, X., Li, Q., Li, G.: New insights into fluorinated TiO2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts. RSC Adv. 5, 34302–34313 (2015). https://doi.org/10.1039/c4ra17076h
- 26.
Li, W., Liang, R., Hu, A., Huang, Z., Zhou, Y.N.: Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 4, 36959–36966 (2014). https://doi.org/10.1039/c4ra04768k
- 27.
Beyer, P., Paulin, S.: Priority pathogens and the antibiotic pipeline: an update (2020). https://www.who.int/bulletin/volumes/98/3/20-251751/en/. Accessed 9 Aug 2020
- 28.
Lee, N.Y., Ko, W.C., Hsueh, P.R.: Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Pharmacol Front (2019). https://doi.org/10.3389/fphar.2019.01153
- 29.
Skocaj, M., Filipic, M., Petkovic, J., Novak, S.: Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 45(4), 227–247 (2011)
- 30.
Arora, B., Murar, M., Dhumale, V.: Antimicrobial potential of TiO 2 nanoparticles against MDR Pseudomonas aeruginosa. J. Exp. Nanosci. 10, 819–827 (2015). https://doi.org/10.1080/17458080.2014.902544
- 31.
Grace, V.M., Peedikayil, J.N., Narayanan, P.M., Vani, C., Sevanan, M.: In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J. Appl. Pharm. Sci. 4, 041–046 (2014). https://doi.org/10.7324/JAPS.2014.40707
- 32.
Ahmed, F.Y., Aly, U.F., Abd El-Baky, R.M.: Waly NGFM (2020) Comparative study of antibacterial effects of titanium dioxide nanoparticles alone and in combination with antibiotics on MDR pseudomonas aeruginosa strains. Int. J. Nanomedicine. 15, 3393–3404 (2020). https://doi.org/10.2147/IJN.S246310
- 33.
Rajakumar, G., Rahuman, A.A., Roopan, S.M., Khanna, V.G., Elango, G., Kamaraj, C., Zahir, A.A., Velayutham, K.: Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria . Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 23–29 (2012). https://doi.org/10.1016/j.saa.2012.01.011
- 34.
Liu, W., Bertrand, M., Chaneac, C., Achouak, W.: TiO2 nanoparticles alter iron homeostasis in: Pseudomonas brassicacearum as revealed by PrrF sRNA modulation. Environ. Sci. Nano. 3, 1473–1482 (2016). https://doi.org/10.1039/c6en00316h
Acknowledgment
The authors thank Dr. Renu Bharadwaj, Head of Department, Microbiology, B. J. Govt. Medical College, Pune – 411001, India for providing P. aeruginosa clinical isolates.
Author information
Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Arya, S., Sonawane, H., Math, S. et al. Biogenic titanium nanoparticles (TiO2NPs) from Tricoderma citrinoviride extract: synthesis, characterization and antibacterial activity against extremely drug-resistant Pseudomonas aeruginosa. Int Nano Lett 11, 35–42 (2021). https://doi.org/10.1007/s40089-020-00320-y
Received:
Accepted:
Published:
Issue Date:
Keywords
- Trichoderma citrinoviridae
- Titanium nanoparticles
- TiO2NPs
- Pseudomonas aeruginosa
- Antibacterial activity
- Antioxidant activity