Biogenic titanium nanoparticles (TiO2NPs) from Tricoderma citrinoviride extract: synthesis, characterization and antibacterial activity against extremely drug-resistant Pseudomonas aeruginosa

Abstract

Green synthesis of nanoparticles has attracted significant attention as an alternative to chemical synthesis procedure. The bulk availability of plants, microbial biomass and the use of eco-friendly solvents has significantly reduced the cost in addition to the hazards associated with the chemical synthesis of the nanoparticle. In this study, we demonstrated the biosynthesis of titanium nanoparticles (TiO2NPs) with the extract of Trichoderma citrinoviridae as a reducing agent. The physicochemical properties of biogenic TiO2NPs were studied using FESEM, Zeta sizer, FTIR and XRD. The size (10–400 nm), morphology, crystallinity, zeta potential (29.5 mV), and polydispersity index (0.327) suggested that the biogenic TiO2NPs were polymorphic, crystalline and stable. FESEM revealed that the synthesized TiO2NPs were majorly irregular, and some interesting TiO2NPs structures, i.e., triangular, pentagonal, spherical and rod were also observed. The biogenic TiO2NPs showed excellent antibacterial activity (100 µg/mL) against planktonic cells of extremely drug-resistant (XDR) Pseudomonas aeruginosa clinical isolates. The TiO2NPs also had better antioxidant potential as compared to standard gallic acid. This study indicates the use of T. citrinoviridae for synthesizing biogenic TiO2NPs and their potential use against XDR bacteria.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Singh, J., Dutta, T., Kim, K.H., Rawat, M., Samddar, P., Kumar, P.: “Green” synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. (2018). https://doi.org/10.1186/s12951-018-0408-4

    Article  Google Scholar 

  2. 2.

    Raveendran, P., Fu, J., Wallen, S.L.: Completely “green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125, 13940–13941 (2003). https://doi.org/10.1021/ja029267j

    CAS  Article  Google Scholar 

  3. 3.

    Feroze, N., Arshad, B., Younas, M., Afridi, M.I., Saqib, S., Ayaz, A.: Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc. Res. Tech. 83, 72–80 (2020). https://doi.org/10.1002/jemt.23390

    CAS  Article  Google Scholar 

  4. 4.

    Kadam, V.V., Ettiyappan, J.P., Mohan Balakrishnan, R.: Mechanistic insight into the endophytic fungus mediated synthesis of protein capped ZnO nanoparticles. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 243, 214–221 (2019). https://doi.org/10.1016/j.mseb.2019.04.017

    CAS  Article  Google Scholar 

  5. 5.

    Naimi-Shamel, N., Pourali, P., Dolatabadi, S.: Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. Mycol. Med. 29, 7–13 (2019). https://doi.org/10.1016/j.mycmed.2019.01.005

    CAS  Article  Google Scholar 

  6. 6.

    Gopinath, K., Karthika, V., Sundaravadivelan, C., Gowri, S., Arumugam, A.: Mycogenesis of cerium oxide nanoparticles using Aspergillus niger culture filtrate and their applications for antibacterial and larvicidal activities. J. Nanostruct. Chem. 5, 295–303 (2015). https://doi.org/10.1007/s40097-015-0161-2

    CAS  Article  Google Scholar 

  7. 7.

    Subhapriya, S., Gomathipriya, P.: Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb. Pathog. 116, 215–220 (2018). https://doi.org/10.1016/j.micpath.2018.01.027

    CAS  Article  Google Scholar 

  8. 8.

    Cuevas, R., Durán, N., Diez, M.C., Tortella, G.R., Rubilar, O.: Extracellular biosynthesis of copper and copper oxide nanoparticles by stereum hirsutum, a native white-rot fungus from chilean forests. J. Nanomater. 2015, 1–7 (2015). https://doi.org/10.1155/2015/789089

    CAS  Article  Google Scholar 

  9. 9.

    Salvadori, M.R., Ando, R.A., Oller Do Nascimento, C.A., Corrêa, B.: Bioremediation from wastewater and extracellular synthesis of copper nanoparticles by the fungus Trichoderma koningiopsis. J. Environ. Sci. Heal. Part A Toxic/Hazardous Subst Environ. Eng. 49, 1286–1295 (2014). https://doi.org/10.1080/10934529.2014.910067

    CAS  Article  Google Scholar 

  10. 10.

    Devi, T.P., Kulanthaivel, S., Kamil, D., Borah, J.L., Prabhakaran, N., Srinivasa, N.: Biosynthesis of silver nanoparticles from Trichoderma species. (2013)

  11. 11.

    Ahluwalia, V., Kumar, J., Sisodia, R., Shakil, N.A., Walia, S.: Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind. Crops Prod. 55, 202–206 (2014). https://doi.org/10.1016/j.indcrop.2014.01.026

    CAS  Article  Google Scholar 

  12. 12.

    Elgorban, A.M., Al-Rahmah, A.N., Sayed, S.R., Hirad, A., Mostafa, A.A.-F., Bahkali, A.H.: Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol. Biotechnol. Equip. 30, 299–304 (2016). https://doi.org/10.1080/13102818.2015.1133255

    CAS  Article  Google Scholar 

  13. 13.

    Tripathi, R.M., Gupta, R.K., Singh, P., Bhadwal, A.S., Shrivastav, A., Kumar, N., Shrivastav, B.R.: Ultra-sensitive detection of mercury(II) ions in water sample using gold nanoparticles synthesized by Trichoderma harzianum and their mechanistic approach. Sensors Actuators B Chem. 204, 637–646 (2014). https://doi.org/10.1016/j.snb.2014.08.015

    CAS  Article  Google Scholar 

  14. 14.

    Joost, U., Juganson, K., Visnapuu, M., Mortimer, M., Kahru, A., Nõmmiste, E., Joost, U., Kisand, V., Ivask, A.: Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J. Photochem. Photobiol. B Biol. 142, 178–185 (2015). https://doi.org/10.1016/j.jphotobiol.2014.12.010

    CAS  Article  Google Scholar 

  15. 15.

    Nasrollahzadeh, M., Sajadi, S.M.: Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradena Jaub root extract and evaluation of their stability. Ceram. Int. 41, 14435–14439 (2015). https://doi.org/10.1016/j.ceramint.2015.07.079

    CAS  Article  Google Scholar 

  16. 16.

    Hajar, O.S., Abd Salam, N.R., Zainal, N., Kadir, B.R., Talib, R.A.: Antimicrobial activity of TiO2 nanoparticle-coated film for potential food packaging applications. J. Photoenergy Int (2014). https://doi.org/10.1155/2014/945930

    Article  Google Scholar 

  17. 17.

    Singh, A.K., Rathod, V.J., Singh, D., Ninganagouda, S., Kulkarni, P., Mathew, J., Haq, M. ul: Bioactive Silver Nanoparticles from Endophytic Fungus Fusarium sp. Isolated from an Ethanomedicinal Plant Withania somnifera (Ashwagandha) and its Antibacterial Activity, (2015)

  18. 18.

    Weinstein, M.P., Lewis, J.S.: The clinical and laboratory standards institute subcommittee on Antimicrobial susceptibility testing: background, organization, functions, and processes. J. Clin. Microbiol. (2020). https://doi.org/10.1128/JCM.01864-19

    Article  Google Scholar 

  19. 19.

    Arya, S.S., Sharma, M.M., Das, R.K., Rookes, J., Cahill, D., Lenka, S.K.: Vanillin mediated green synthesis and application of gold nanoparticles for reversal of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates. Heliyon. 5, e02021 (2019). https://doi.org/10.1016/j.heliyon.2019.e02021

    Article  Google Scholar 

  20. 20.

    Dosunmu, E., Chaudhari, A.A., Singh, S.R., Dennis, V.A., Pillai, S.R.: Silver-coated carbon nanotubes downregulate the expression of Pseudomonas aeruginosa virulence genes: a potential mechanism for their antimicrobial effect. Int. J. Nanomed. 10, 5025–5034 (2015). https://doi.org/10.2147/IJN.S85219

    CAS  Article  Google Scholar 

  21. 21.

    Santhoshkumar, T., Rahuman, A.A., Jayaseelan, C., Rajakumar, G., Marimuthu, S., Kirthi, A.V., Velayutham, K., Thomas, J., Venkatesan, J., Kim, S.K.: Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac. J. Trop. Med. 7(12), 968–976 (2014)

    CAS  Google Scholar 

  22. 22.

    Siddiquee, S.: Practical handbook of the biology and molecular diversity of trichoderma species from tropical regions. Springer International Publishing, Cham (2017)

    Google Scholar 

  23. 23.

    Popov, A.P., Lademann, J., Priezzhev, A.V., Myllylä, R.: Effect of size of TiO[sub 2] nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J. Biomed. Opt. 10, 064037 (2005). https://doi.org/10.1117/1.2138017

    CAS  Article  Google Scholar 

  24. 24.

    Slavin, Y.N., Asnis, J., Häfeli, U.O., Bach, H.: Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol (2017). https://doi.org/10.1186/s12951-017-0308-z

    Article  Google Scholar 

  25. 25.

    Wang, Y., Li, L., Huang, X., Li, Q., Li, G.: New insights into fluorinated TiO2 (brookite, anatase and rutile) nanoparticles as efficient photocatalytic redox catalysts. RSC Adv. 5, 34302–34313 (2015). https://doi.org/10.1039/c4ra17076h

    CAS  Article  Google Scholar 

  26. 26.

    Li, W., Liang, R., Hu, A., Huang, Z., Zhou, Y.N.: Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 4, 36959–36966 (2014). https://doi.org/10.1039/c4ra04768k

    CAS  Article  Google Scholar 

  27. 27.

    Beyer, P., Paulin, S.: Priority pathogens and the antibiotic pipeline: an update (2020). https://www.who.int/bulletin/volumes/98/3/20-251751/en/. Accessed 9 Aug 2020

  28. 28.

    Lee, N.Y., Ko, W.C., Hsueh, P.R.: Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Pharmacol Front (2019). https://doi.org/10.3389/fphar.2019.01153

    Article  Google Scholar 

  29. 29.

    Skocaj, M., Filipic, M., Petkovic, J., Novak, S.: Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 45(4), 227–247 (2011)

    CAS  Google Scholar 

  30. 30.

    Arora, B., Murar, M., Dhumale, V.: Antimicrobial potential of TiO 2 nanoparticles against MDR Pseudomonas aeruginosa. J. Exp. Nanosci. 10, 819–827 (2015). https://doi.org/10.1080/17458080.2014.902544

    CAS  Article  Google Scholar 

  31. 31.

    Grace, V.M., Peedikayil, J.N., Narayanan, P.M., Vani, C., Sevanan, M.: In vitro study on the efficacy of zinc oxide and titanium dioxide nanoparticles against metallo beta-lactamase and biofilm producing Pseudomonas aeruginosa. J. Appl. Pharm. Sci. 4, 041–046 (2014). https://doi.org/10.7324/JAPS.2014.40707

    CAS  Article  Google Scholar 

  32. 32.

    Ahmed, F.Y., Aly, U.F., Abd El-Baky, R.M.: Waly NGFM (2020) Comparative study of antibacterial effects of titanium dioxide nanoparticles alone and in combination with antibiotics on MDR pseudomonas aeruginosa strains. Int. J. Nanomedicine. 15, 3393–3404 (2020). https://doi.org/10.2147/IJN.S246310

    CAS  Article  Google Scholar 

  33. 33.

    Rajakumar, G., Rahuman, A.A., Roopan, S.M., Khanna, V.G., Elango, G., Kamaraj, C., Zahir, A.A., Velayutham, K.: Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria . Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 91, 23–29 (2012). https://doi.org/10.1016/j.saa.2012.01.011

    CAS  Article  Google Scholar 

  34. 34.

    Liu, W., Bertrand, M., Chaneac, C., Achouak, W.: TiO2 nanoparticles alter iron homeostasis in: Pseudomonas brassicacearum as revealed by PrrF sRNA modulation. Environ. Sci. Nano. 3, 1473–1482 (2016). https://doi.org/10.1039/c6en00316h

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Renu Bharadwaj, Head of Department, Microbiology, B. J. Govt. Medical College, Pune – 411001, India for providing P. aeruginosa clinical isolates.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Sagar Arya or Hiralal Sonawane.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arya, S., Sonawane, H., Math, S. et al. Biogenic titanium nanoparticles (TiO2NPs) from Tricoderma citrinoviride extract: synthesis, characterization and antibacterial activity against extremely drug-resistant Pseudomonas aeruginosa. Int Nano Lett (2020). https://doi.org/10.1007/s40089-020-00320-y

Download citation

Keywords

  • Trichoderma citrinoviridae
  • Titanium nanoparticles
  • TiO2NPs
  • Pseudomonas aeruginosa
  • Antibacterial activity
  • Antioxidant activity