Abstract
The buckling behavior of a nonuniform single-walled carbon nanotube (SWCNT), subjected to axially compressive load, is studied using the nonlocal elasticity theory. The differential transformation method (DTM) has been used to obtain the nonlocal buckling loads of the nonuniform SWCNT under various boundary conditions, namely simply supported, fixed–fixed, and fixed-simply supported. The nanotube’s nonlocal buckling load increases significantly with an increase in the tip’s diameter; however, it decreases substantially with increasing the small-scale parameter for both uniform and nonuniform SWCNTs. The results obtained from the DTM agree well with those reported in the literature for uniform SWCNTs. The accuracy of the results revealed that DTM is useful and convenient for investigating the buckling behavior of nonuniform CNTs with small-scale effects for various boundary conditions compared to other analytical methods. This work would provide helpful insights into the design of nonuniform CNT-based devices.
This is a preview of subscription content, log in to check access.




Abbreviations
- \(x\), \(y\) :
-
Cartesian coordinates
- \(L\) :
-
Length of carbon nanotube
- \(d\) :
-
Diameter of carbon nanotube tip
- \(d_{0}\) :
-
Diameter of carbon nanotube at \(x = 0\)
- \(E\) :
-
Young's modulus
- \(u\left( x \right)\) :
-
Flexural deflection at \(x\)
- \(w\left( \xi \right)\) :
-
Dimensionless flexural deflection at \(\xi\)
- \(W\left(k\right)\) :
-
Differential transformed deflection
- \(\left( {\begin{array}{*{20}c} m \\ r \\ \end{array} } \right)\) :
-
Combination \(\left( {m!/\left( {m - r} \right)!r!} \right)\)
- \(r_{a}\), \(r_{b}\) :
-
Outer and inner radii of carbon nanotube
- \(I_{0}\) :
-
Moment of inertia at \(x = 0\)
- \(I\left( x \right)\) :
-
Moment of inertia at \(x\)
- \(M\left( x \right)\) :
-
Bending moment at \(x\)
- \(V\left( x \right)\) :
-
Shear force at \(x\)
- \(e_{0}\) :
-
Adjustable parameter
- \(a\) :
-
Internal characteristic length
- \(A\left( x \right)\) :
-
Cross-sectional area at \(x\)
- \(F\) :
-
Buckling load
- \(p\) :
-
Dimensionless load parameter
- \(\xi\) :
-
Dimensionless variable (\(x/L)\)
- \(\varepsilon \left( x \right)\) :
-
Strain at \(x\)
- \(\beta\) :
-
Taper ratio
- \(\sigma \left( x \right)\) :
-
Stress at \(x\)
- \(\mu\) :
-
Small-scale parameter
- CNT:
-
Carbon nanotube
- SWCNT:
-
Single-walled carbon nanotube
- MWCNT:
-
Multi-walled carbon nanotube
- DTM:
-
Differential transformation method
- SS:
-
Simply supported
- FF:
-
Fixed–fixed
- FS:
-
Fixed-simply supported
References
- 1.
Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (eds.): Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Springer, Berlin (2001)
- 2.
Rai, D.P., Singh, Y.T., Chettri, B., Houmad, M., Patra, P.K.: A theoretical prediction of electronic and optical properties of (6,1) single-wall carbon nanotube (SWCNT). Carbon Lett. (2020). https://doi.org/10.1007/s42823-020-00172-8
- 3.
Bhardwaj, P., Kaushik, S., Gairola, P., Gairola, S.P.: Exceptional electromagnetic radiation shielding performance and dielectric properties of surfactant assisted polypyrrole-carbon allotropes composites. Radiat. Phys. Chem. 151, 156–163 (2018)
- 4.
Singh, B.P., Bhardwaj, P., Choudhary, V., Mathur, R.B.: Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites. Appl. Nanosci. 4, 421–428 (2014)
- 5.
Bhardwaj, P., Singh, S., Kharangarh, P.R., Grace, A.N.: Surfactant decorated polypyrrole-carbon materials composites electrodes for supercapacitor. Diamond Relat. Mater. 108, 107989 (2020)
- 6.
Sharma, A.K., Bhardwaj, P., Dhawan, S.K., Sharma, Y.: Oxidative synthesis and electrochemical studies of poly(aniline-co-pyrrole)-hybrid carbon nanostructured composite electrode materials for supercapacitor. Adv. Mater. Lett. 6, 414–420 (2015)
- 7.
Sehrawat, P., Julien, C., Islam, S.S.: Carbon nanotubes in Li-ion batteries: a review. Mater. Sci. Eng. B 213, 12–40 (2016)
- 8.
Eid, M.R., Al-Hossainy, A.F., Zoromba, MSh.: FEM for blood-based SWCNTs flow through a circular cylinder in a porous medium with electromagnetic radiation. Commun. Theor. Phys. 71, 1425–1434 (2019)
- 9.
Muhammad, T., Lu, D., Mahanthesh, B., Eid, M.R., Ramzan, M., Dar, A.: Significance of Darcy–Forchheimer porous medium in nanofluid through carbon nanotubes. Commun. Theor. Phys. 70, 361–366 (2018)
- 10.
Pugno, N.M.: The role of defects in the design of space elevator cable: from nanotube to megatube. Acta Mater. 55, 5269–5279 (2007)
- 11.
Ru, C.Q.: Degraded axial buckling strain of multiwalled carbon nanotubes due to interlayer slips. J. Appl. Phys. 89, 3426–3433 (2001)
- 12.
Lourie, O., Cox, D.M., Wagner, H.D.: Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638–1641 (1998)
- 13.
Yakobson, B.I., Brabec, C.J., Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 76, 2511–2514 (1996)
- 14.
Wong, E.W., Sheehan, P.E., Lieber, C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)
- 15.
Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)
- 16.
Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678–680 (1996)
- 17.
Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N., Treacy, M.M.J.: Young’s modulus of single-walled nanotubes. Phys. Rev. B 58, 14013–14019 (1998)
- 18.
Eringen, A.C.: Nonlocal Polar Field Models. Academic, New York (1976)
- 19.
Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)
- 20.
Sudak, L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)
- 21.
Zhang, Y.Q., Liu, G.R., Wang, J.S.: Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression. Phys. Rev. B 70, 205430 (2004)
- 22.
Zhang, Y.Q., Liu, G.R., Xie, X.Y.: Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)
- 23.
Wang, Q., Shindo, Y.: Nonlocal continuum models for carbon nanotubes subjected to static loading. J. Mech. Mater. Struct. 1, 663–680 (2006)
- 24.
Mawphlang, B.R.K.L.L., Patra, P.K.: Analytical expressions for deflection and strain energy of a cantilevered carbon nanotube using nonlocal continuum models. Adv. Sci. Eng. Med. 9, 420–425 (2017)
- 25.
Murmu, T., Pradhan, S.C.: Small-scale effect on the vibration of nonuniform nano cantilever based on nonlocal elasticity theory. Physica E 41, 1451–1456 (2009)
- 26.
Wang, C.M., Zhang, Y.Y., Ramesh, S.S., Kitipornchai, S.: Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 39, 3904–3909 (2006)
- 27.
Ansari, R., Sahmani, S., Rouhi, H.: Rayleigh–Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys. Lett. A 375, 1255–1263 (2011)
- 28.
Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Bedia, A., El, A., Hadji, L.: Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory. Mech. Compos. Mater. 50, 95–104 (2014)
- 29.
Ebrahimi, F., Shaghaghi, G.R., Boreiry, M.: A semianalytical evaluation of surface and nonlocal effects on buckling and vibrational characteristics of nanotubes with various boundary conditions. Int. J. Struct. Stab. Dyn. 16, 1550023 (2016)
- 30.
Rafiei, M., Mohebpour, S.R., Daneshmand, F.: Small-scale effect on the vibration of non-uniform carbon nanotubes conveying fluid and embedded in viscoelastic medium. Physica E 44, 1372–1379 (2012)
- 31.
Robinson, M.T.A., Adali, S.: Buckling of nonuniform carbon nanotubes under concentrated and distributed axial loads. Mech. Sci. 8, 299–305 (2017)
- 32.
Cheng, B., Yang, S., Woldu, Y.T., Shafique, S., Wang, F.: A study on the mechanical properties of a carbon nanotube probe with a high aspect ratio. Nanotechnology 31, 145707 (2020)
- 33.
Ayaz, F.: Applications of differential transform method to differential-algebraic equations. Appl. Math. Comput. 152, 649–657 (2004)
- 34.
Arikoglu, A., Ozkol, I.: Solution of boundary value problems for integro-differential equations by using differential transform method. Appl. Math. Comput. 168, 1145–1158 (2005)
- 35.
Abdelghany, S.M., Ewis, K.M., Mahmoud, A.A., Nassar, M.M.: Vibration of a circular beam with variable cross sections using differential transformation method. Beni Suef Univ. J. Basic Appl. Sci. 4, 185–191 (2015)
- 36.
Senthilkumar, V.: Buckling analysis of a single-walled carbon nanotube with nonlocal continuum elasticity by using differential transform method. Adv. Sci. Lett. 3, 337–340 (2010)
- 37.
Pradhan, S.C., Reddy, G.K.: Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM. Comput. Mater. Sci. 50, 1052–1056 (2011)
- 38.
Jena, S.K., Chakraverty, S.: Differential quadrature and differential transformation methods in buckling analysis of nanobeams. Curved Layer Struct. 6, 68–76 (2019)
- 39.
Zhou, J.K.: Differential Transformation and its Application for Electrical Circuits. Huazhong University Press, Wuhan (1986)
- 40.
Wei, D.J., Yan, S.X., Zhang, Z.P., Li, X.F.: Critical load for buckling of non-prismatic columns under self-weight and tip force. Mech. Res. Commun. 37, 554–558 (2010)
Acknowledgements
D. P. Rai acknowledges Core Research Grant from Department of Science and Technology SERB (CRG DST-SERB, New Delhi India) via Sanction no. CRG/2018/000009(Ver-1).
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mawphlang, B.R.K.L.L., Ghimire, M.P., Rai, D.P. et al. Buckling behavior of nonuniform carbon nanotubes using nonlocal elasticity theory and the differential transformation method. Int Nano Lett (2020). https://doi.org/10.1007/s40089-020-00319-5
Received:
Accepted:
Published:
Keywords
- Buckling behavior
- Nonlocal elasticity theory
- Nonuniform carbon nanotubes
- Differential transformation method