Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration

Abstract

Nanofibers have attracted great research attention owing to their unique physicochemical characteristics and broad implementation potential. These one dimensional nanostructures are being increasingly applied in biomedical fields such as manufacturing the scaffolding materials for regenerate new tissues owing to their great surface area/to/volume ratio, high porosity by interrelated pore configuration and the suitable surface structure for cell attachment, proliferation, growth, adhesion, viability and differentiation. Nanofibrous scaffolds with porous construction can mimic the extra cellular matrix structure in providing the suitable area for cells in their microenvironment. Fabrication of nanofibrous scaffolds for cell cultivating is an important process for tissue engineering method. After that, implanting the scaffold―cell matrix in human body is a main stage for tissue regeneration. This review will consider important notes about tissue regeneration process briefly, and the novel explorations in manufacturing the nanostructure scaffolds will be reported.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Przekora, A.: Current trends in fabrication of biomaterials for bone and cartilage regeneration: materials modifications and biophysical stimulations. Int. J. Mol. Sci. 20, 435 (2019)

    Article  CAS  Google Scholar 

  2. 2.

    Jun, I., Han, H.-S., Edwards, J.-R., Jeon, H.: Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int. J. Mol. Sci. 19, 745 (2018)

    Article  CAS  Google Scholar 

  3. 3.

    Alam, F., Varadarajan, K.-M., Kumar, S.: 3D printed polylactic acid nanocomposite scaffolds for tissue engineering applications. Polym. Test. 81, 106203 (2020)

    CAS  Article  Google Scholar 

  4. 4.

    Qasim, M., Chae, D.-S., Lee, N.-Y.: Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int. J. Nanomed. 14, 4333–4351 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    Chen, J., Yu, M., Guo, B., Ma, P.-X., Yin, Z.: Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration. J. Colloid Interface Sci. 514, 517–527 (2018)

    CAS  Article  Google Scholar 

  6. 6.

    Magiera A, Markowski J, Menaszek E, Pilch J, Blazewicz S. PLA-Based hybrid and composite electrospun fibrous scaffolds as potential materials for tissue engineering. J Nano Mater. 9246802–9246813 (2017)

  7. 7.

    Salifu, A.-A., Lekakou, C., Labeed, F.-H.: Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. J Biomed. Mater. Res. Part A 105A, 1911–1926 (2017)

    Article  CAS  Google Scholar 

  8. 8.

    Horakova, J., Mikes, P., Saman, A., Svarcova, T., Jencova, V., Suchy, T., Heczkova, B., Jakubkova, S., Jirousova, J., Prochazkova, R.: Comprehensive assessment of electrospun scaffolds hemocompatibility. Mater. Sci. Eng. C 82, 330–335 (2018)

    CAS  Article  Google Scholar 

  9. 9.

    Zhao, P., Gu, H., Mi, H., Rao, C., Fu, J., Turng, L.-S.: Fabrication of scaffolds in tissue engineering: a review. Front. Mech. Eng. 13, 107–119 (2018)

    Article  Google Scholar 

  10. 10.

    Marino, A., Tonda-Turo, C., De Pasquale, D., Ruini, F., Genchi, G., Nitti, S., Cappello, V., Gemmi, M., Mattoli, V., Ciardelli, G.: Gelatin/nanoceria nanocomposite fibers as antioxidant scaffolds for neuronal regeneration. Biochim. Biophys. Acta 1861, 386–395 (2016)

    Article  CAS  Google Scholar 

  11. 11.

    Kitsara, M., Blanquer, A., Murillo, G., Humblot, V., Vieira, S.-B., Nogués, C., Ibáñez, E., Esteve, J., Barrios, L.: Permanently hydrophilic, piezoelectric PVDF nanofibrous scaffolds promoting unaided electromechanical stimulation on osteoblasts. Nanoscale 11(18), 8906–8917 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    Puppi, D., Chiellini, F., Piras, A.-M., Chiellini, E.: Polymeric materials for bone and cartilage repair. Prog. Polym. Sci. 35(4), 403–440 (2010)

    CAS  Article  Google Scholar 

  13. 13.

    Wang, C., Hou, W., Guo, X., Li, J., Hu, T., Qiu, M., Liu, S., Mo, X., Liu, X.: Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Mater. Sci. Eng. C 79, 507–515 (2017)

    CAS  Article  Google Scholar 

  14. 14.

    Gugutkov, D., Gustavsson, J., Cantini, M., Salmeron-Sánchez, M., Altankov, G.: Electrospun fibrinogen–PLA nanofibres for vascular tissue engineering. J. Tissue Eng. Reg. Med. 11(10), 2774–2784 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    Dong, X., Zhang, J., Pang, L., Chen, J., Qi, M., You, S., Ren, N.: An anisotropic three-dimensional electrospun micro/nanofibrous hybrid PLA/PCL scaffold. R. Soc. Chem. 9, 9838–9844 (2019)

    CAS  Google Scholar 

  16. 16.

    Nuge, T., Tshai, K.-Y., Lim, S.-S., Nordin, N., Hoque, M.-E.: Characterization and optimization of the mechanical properties of electrospun gelatin nanofibrous scaffolds. World J. Eng. 17(1), 1–35 (2020)

    Article  Google Scholar 

  17. 17.

    Weijie, Z., Zhuo, C., Sujuan, M., Yonggang, W., Fei, Z., Keyi, W., Chenguang, Y., Xiuying, P., Jianzhong, M., Yuli, W., Feifan, L., Fen, R., Yanbei, K.: Cistanche polysaccharide (CDPS)/polylactic acid (PLA) scaffolds based coaxial electrospinning for vascular tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 65(1), 38–46 (2016)

    Article  CAS  Google Scholar 

  18. 18.

    Du, M., Gu, J., Wang, J., Xue, Y., Ma, Y., Mo, X., Xue, S.: Silk fibroin/poly(l-lactic acid-co-ε-caprolactone) electrospun nanofibrous scaffolds exert a protective effect following myocardial infarction. Exp. Ther. Med. 17(5), 3989–3998 (2019)

    CAS  Google Scholar 

  19. 19.

    Riggin, C.-N., Qu, F., Kim, D.-H., Huegel, J., Steinberg, D.-R., Kuntz, A.-F., Soslowsky, L.-J., Mauck, R.-L., Bernstein, J.: Electrospun PLGA Nanofiber Scaffolds Release Ibuprofen Faster and Degrade Slower after In Vivo Implantation. Ann. Biomed. Eng. 45(10), 2348–2359 (2017)

    Article  Google Scholar 

  20. 20.

    Eltom, A., Zhong, G., Muhammad, A.: Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv. Mater. Sci. Eng. 3429527–3429540 (2019)

  21. 21.

    Batsivari, A., Luydmila-Rachelle-Haltalli, M., Passaro, D., Pospori, C., Celso, C.-L., Bonnet, D.: Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat. Cell Biol. 22, 7–17 (2020)

    CAS  Article  Google Scholar 

  22. 22.

    Nofar, M., Sacligil, D., Carreau, P.-J., Kamal, M.-R., Heuzey, M.-C.: Poly(lactic acid) blends: processing, properties and applications. Int. J. Biol. Macromol. 125, 307–360 (2019)

    CAS  Article  Google Scholar 

  23. 23.

    Khorshidi, S., Solouk, A., Mirzadeh, H., Mazinani, S., Lagaron, J.-M., Sharifi, S., Ramakrishna, S.: A review of key challenges of electrospun scaffolds for tissue-engineering applications. J. Tissue Eng. Reg. Med. 10(9), 715–738 (2016)

    CAS  Article  Google Scholar 

  24. 24.

    Qu, H., Fu, H., Hana, Z., Sun, Y.: Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 9, 26252–26262 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    Aldana, A.-A., Abraham, G.-A.: Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int. J. Pharm. 523(2), 441–453 (2017)

    CAS  Article  Google Scholar 

  26. 26.

    Bochynska-Czyz, M., Redkiewicz, P., Kozlowska, H., Matalinska, J., Konop, M., Kosson, P.: Can keratin scaffolds be used for creating three-dimensional cell cultures? Pharm. Dev. Tech. 15(1), 249–253 (2020)

    CAS  Google Scholar 

  27. 27.

    Liu, X., Nielsen, L.-H., Kłodzińska, S.-N., Nielsen, H.-M., Qu, H., Christensen, L.-P., Rantanen, J., Yang, M.: Ciprofloxacin-loaded sodium alginate/poly(lactic-co-glycolic acid) electrospun fibrous mats for wound healing. Eur. J. Pharm. Biopharm. 123, 42–49 (2018)

    CAS  Article  Google Scholar 

  28. 28.

    Matsuzaki, Y., John, K., Shoji, T., Shinoka, T.: The evolution of tissue engineered vascular graft technologies: from preclinical trials to advancing patient care. Appl. Sci. 9, 1274 (2019)

    CAS  Article  Google Scholar 

  29. 29.

    N-Tah, I., Nab, A.: Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem. 63(3), 417–432 (2019)

    Article  Google Scholar 

  30. 30.

    Datta, S., Jana, S., Das, A., Chakraborty, A., Chowdhury, A.-R., Datta, P.: Bioprinting of radiopaque constructs for tissue engineering and understanding degradation behavior by use of Micro-CT. Bioact. Mater. 5(3), 569–576 (2020)

    Article  Google Scholar 

  31. 31.

    Zhou, Y., Wu, C., Chang, J.: Bioceramics to regulate stem cells and their microenvironment for tissue regeneration. Matter Today 24, 41–56 (2019)

    CAS  Article  Google Scholar 

  32. 32.

    Dzikowski, M., Castanié, N., Guedon, A., Verrier, B., Primard, C., Sohiera, J.: Antibiotic incorporation in jet-sprayed nanofibrillar biodegradable scaffolds for wound healing. Int. J. Pharm. 532, 802–812 (2017)

    CAS  Article  Google Scholar 

  33. 33.

    Yu, F., Li, M., Yuan, Z., Rao, F., Fang, X., Jiang, B., Wen, Y., Zhang, P.: Mechanism research on a bioactive resveratrol–PLA–gelatin porous nano-scaffold in promoting the repair of cartilage defect. Int. J. Nanomed. 13, 7845–7858 (2018)

    CAS  Article  Google Scholar 

  34. 34.

    Chocholata, P., Kuld, V., Babusk, V.: Fabrication of scaffolds for bone-tissue regeneration. Matter 12, 586 (2019)

    Article  CAS  Google Scholar 

  35. 35.

    Luo, Y., Shen, H., Fang, Y., Cao, Y., Huang, J., Zhang, M., Dai, J., Shi, X., Zhang, Z.: Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl. Mater. Interfaces 7(11), 6331–6339 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    Mohiti-Asli, M., Saha, S., Murphy, S.-V., Gracz, H., Pourdeyhimi, B., Atala, A., Loboa, E.-G.: Ibuprofen loaded PLA nanofibrous scaffolds increase proliferation of human skin cells in vitro and promote healing of full thickness incision wounds in vivo. J. Biomed. Mater. Res. Part B Appl. Biomater. 105(2), 327–339 (2017)

    CAS  Article  Google Scholar 

  37. 37.

    Saber-Samandari, S., Ghonjizade-Samani, F., Aghazadeh, J., Sadeghi, A.: Bioactivity evaluation of novel nanocomposite scaffolds for bone tissue engineering: the impact of hydroxyapatite. Ceram. Int. 42(9), 11055–11062 (2016)

    CAS  Article  Google Scholar 

  38. 38.

    Muthukumar, T., Aravinthan, A., Sharmila, J., Kim, N.-S., Kim, J.-H.: Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr. Polym. 152, 566–574 (2016)

    CAS  Article  Google Scholar 

  39. 39.

    Ferreira, F.-V., Otoni, C.-G., France, K.-J.-D., Barud, H.-S., Lona, L.-M.-F., Cranston, E.-D., Rojas, O.-J.: Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering. Mater Today 37, 126–141 (2020)

    CAS  Article  Google Scholar 

  40. 40.

    Gur-Cohen, S., Yang, H., C-Baksh, S., Miao, Y., Levorse, J., P-Kataru, R., Liu, X., Cruz-Racelis, J.-D.-L., J-Mehrara, B., Fuchs, E.: Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science 366(6470), 1218–1225 (2019)

    CAS  Article  Google Scholar 

  41. 41.

    Montini-Ballarin, F., Caracciolo, P.-C., Blotta, E., Ballarin, V.-L., Abraham, G.-A.: Optimization of poly(l-lactic acid)/segmented polyurethane electrospinning process for the production of bilayered small-diameter nanofibrous tubular structures. Mater. Sci. Eng. C 42, 489–499 (2014)

    CAS  Article  Google Scholar 

  42. 42.

    Xu, T., Yang, H., Yang, D., Yu, Z.-Z.: Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl. Mater. Interface 9(25), 21094–21104 (2017)

    CAS  Article  Google Scholar 

  43. 43.

    Li, W., Tan, X., Luo, T., Shi, Y., Yang, Y., Liu, L.: Preparation and characterization of electrospun PLA/PU bilayer nanofibrous membranes for controlled drug release applications. Integr. Ferroelectr. 179(1), 104–119 (2017)

    CAS  Article  Google Scholar 

  44. 44.

    Pilehvar-Soltanahmadi, Y., Dadashpour, M., Mohajeri, A., Fattahi, A., Sheervalilou, R., Zarghami, N.: An overview on application of natural substances incorporated with electrospun nanofibrous scaffolds to development of innovative wound dressings. Mini-Rev. Med. Chem. 18(5), 414–427 (2018)

    CAS  Article  Google Scholar 

  45. 45.

    Zhu, M., Li, W., Dong, X., Yuan, X., Midgley, A.-C., Chang, H., Wang, Y., Wang, H., Wang, K., Ma, P.X., Wang, H., Kong, D.: In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nat. Commun. 10(1), 4620 (2019)

    Article  CAS  Google Scholar 

  46. 46.

    Lai, X., Li, Y., Cao, H., Long, J., Wang, X., Li, L., Li, C., Jia, Q., Teng, B., Tang, T., Peng, J., Eglin, D., Alini, M., W-Grijpm, D., Richards, G., Qin, L.: Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomatter 197, 207–219 (2019)

    CAS  Article  Google Scholar 

  47. 47.

    Nakahar, F., Borger, D.K., Wei, Q., Pinho, S., Maryanovich, M., Zahalka, A.H., Suzuki, M., Cruz, C.D., Wang, Z., Xu, C., Boulais, P.E., Ma’ayan, A., Greally, J.M., Frenette, P.S.: Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nat. Cell Biol. 21, 560–567 (2019)

    Article  CAS  Google Scholar 

  48. 48.

    Zhang, Y., Yang, Y., Mao, L., Cheng, D., Zhan, Z., Xiong, J.: Growth of three-dimensional hierarchical Co3O4@NiMoO4 core-shell nanoflowers on Ni foam as electrode materials for hybrid supercapacitors. Mater. Lett. 182, 298–301 (2016)

    CAS  Article  Google Scholar 

  49. 49.

    Brown, A., Zaky, S., Ray, H., Sfeir, C.: Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 11, 543–553 (2015)

    CAS  Article  Google Scholar 

  50. 50.

    Zhang, Z.-Z., Jiang, D., Ding, J.-X., Wang, S.-J., Zhang, L., Zhang, J.-Y., Qi, Y.-S., Chen, X.-S., Yu, J.-K.: Role of scaffold mean pore size in meniscus regeneration. Acta Biomater. 43, 314–326 (2016)

    CAS  Article  Google Scholar 

  51. 51.

    Li, L., Stiadle, J.-M., Lau, H.-K., Zerdoum, A.-B., Jia, X., Thibeault, S.-L., Kiick, K.-L.: Tissue engineering-based therapeutic strategies for vocal fold repair and regeneration. Biomaterials 108, 91–110 (2016)

    CAS  Article  Google Scholar 

  52. 52.

    Qi, H., Ye, Z., Ren, H., Chen, N., Zeng, Q., Wu, X., Lu, T.: Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci. 44, 139–148 (2016)

    Article  CAS  Google Scholar 

  53. 53.

    Thottappillil, N., Nair, P.D.: Scaffolds in vascular regeneration: current status. Vasc. Health Risk Manag. 11, 79–91 (2015)

    CAS  Google Scholar 

  54. 54.

    Zhang, P., Han, N., Kou, Y.-H., Zhu, Q.-T., Liu, X.-L., Quan, D.-P., Chen, J.-G., Jiang, B.-G.: Tissue engineering for the repair of peripheral nerve injury. Neural Regen. Res. 14(1), 51–58 (2019a)

    Article  Google Scholar 

  55. 55.

    Ferreira, F.-V., Souza, L.-P., Martins, T.-M.-M., Lopes, J.-H., Mattos, B.D., Mariano, M., Pinheiro, I.F., Valverde, T.M., Livi, S., Camilli, J.A., Goes, A.M., Gouveia, R.F., Lona, L.M.F., Rojas, O.J.: Nanocellulose/bioactive glass cryogels as scaffolds for bone regeneration. Nanoscale 11, 19842–19849 (2019)

    CAS  Article  Google Scholar 

  56. 56.

    Kuttappan, S., Mathew, D., Nair, M.-B.: Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering—a mini review. Int. J. Biol. Macromol. 93, 1390–1401 (2016)

    CAS  Article  Google Scholar 

  57. 57.

    Dattola, E., Parrotta, E.-I., Scalise, S., Perozziello, G., Limongi, T., Candeloro, P., Coluccio, M.-L., Maletta, C., Bruno, L., Angelis, M.-T.-D., Santamaria, G., Mollace, V., Lamanna, E., Fabrizio, E.-D., Cuda, G.: Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Adv. 9, 4246–4257 (2019)

    CAS  Article  Google Scholar 

  58. 58.

    Bhat, V., Allan, A.L., Raouf, A.: Role of the microenvironment in regulating normal and cancer stem cell activity: implications for breast cancer progression and therapy response. Cancer 11, 1240 (2019)

    CAS  Article  Google Scholar 

  59. 59.

    Rijal, G., Li, W.: Native-mimicking in vitro microenvironment: an elusive and seductive future for tumor modeling and tissue engineering. J. Biol. Eng. 12(1), 20 (2018)

    CAS  Article  Google Scholar 

  60. 60.

    Hao, Z., Song, Z., Huang, J., Huang, K., Panetta, A., Gu, Z., Wu, J.: The scaffold microenvironment for stem cell based bone tissue engineering. Biomater. Sci. 5(8), 1382–1392 (2017)

    CAS  Article  Google Scholar 

  61. 61.

    Sachs, P.-C., Mollica, P.-A., Bruno, R.-D.: Tissue specific microenvironments: a key tool for tissue engineering and regenerative medicine. J. Biol. Eng. 11, 34–34 (2017)

    Article  CAS  Google Scholar 

  62. 62.

    Shrestha, S., Shrestha, B., Won-Ko, S., Kandel, R., Hee-Park, C., Sang-Kim, C.: Engineered cellular microenvironments from functionalized multiwalled carbon nanotubes integrating Zein/chitosan@polyurethane for bone cell regeneration. Carbohydr. Polym. 251, 117035–117051 (2021)

    CAS  Article  Google Scholar 

  63. 63.

    Bersini, S., Yazdi, I.-K., Talò, G., Shin, S.-R., Moretti, M., Khademhosseini, A.: Cell-microenvironment interactions and architectures in microvascular systems. Biotechnol. Adv. 34(6), 1113–1130 (2016)

    CAS  Article  Google Scholar 

  64. 64.

    Kjell, J., Fischer-Sternjak, J., Thompson, A.-J., Franze, K., Schiller, H.-B.: Defining the adult neural stem cell niche proteome identifies key regulators of adult neurogenesis. Cell Stem Cell 26, 277–293 (2020)

    CAS  Article  Google Scholar 

  65. 65.

    Gink, N.Y., Xanthe, L.-S., Claudine, B., Zlatko, K., Cowin, A.-J.: Effect of flightless I expression on epidermal stem cell niche during wound repair. Adv. Wound Care 9(4), 161–173 (2020)

    Article  Google Scholar 

  66. 66.

    Entekhabi, E., Haghbin-Nazarpak, M., Moztarzadeh, F., Sadeghi, A.: Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater. Sci. Eng. C 69, 380–387 (2016)

    CAS  Article  Google Scholar 

  67. 67.

    Lee, J.-B., Jeong, S.-I., Bae, M.-S., Heo, D.-N., Heo, J.-S., Hwang, Y.-S., Lee, H.-W., Kwon, I.-K.: Poly(l-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds. J. Nanosci. Nanotechnol. 11(7), 6371–6376 (2011)

    CAS  Article  Google Scholar 

  68. 68.

    Rezvani, Z., Venugopal, J.R., Urbanska, A.M., Mills, D.K., Ramakrishna, S., Mozafari, M.: A bird’s eye view on the use of electrospun nanofibrous scaffolds for bone tissue engineering: Current state-of-the-art, emerging directions and future trends. Nanomed. Nanotechnol. Biol. Med. 12(7), 2181–2200 (2016)

    CAS  Article  Google Scholar 

  69. 69.

    Spicer, C.-D.: Hydrogel scaffolds for tissue engineering: the importance of polymer choice. Polym. Chem. 11(2), 184–219 (2020)

    CAS  Article  Google Scholar 

  70. 70.

    Martín, A.R., Patel, J.M., Zlotnick, H.M., Carey, J.L., Mauck, R.L.: Emerging therapies for cartilage regeneration in currently excluded ‘red knee’ populations. Regener. Med. 4(12), 1 (2019)

    Google Scholar 

  71. 71.

    Goranov, V., Shelyakova, T., De-Santis, R., Haranava, Y., Makhaniok, A., Gloria, A., Tampieri, A., Russo, A., Kon, E., Marcacci, M., Ambrosio, L., Dediu, V.A.: 3D patterning of cells in magnetic scaffolds for tissue engineering. Sci. Rep. 10(1), 2289 (2020)

    CAS  Article  Google Scholar 

  72. 72.

    Kosowsk, K., Domalik-Pyzik, P., Krok-Borkowicz, M., Chłopek, J.: Polylactide/hydroxyapatite nonwovens incorporated into chitosan/graphene materials hydrogels to form novel hierarchical scaffolds. Int. J. Mol. Sci. 21, 2330 (2020)

    Article  CAS  Google Scholar 

  73. 73.

    Eftekhari, A., Maleki-Dizaj, S., Sharifi, S., Salatin, S., Rahbar-Saadat, Y., Zununi-Vahed, S., Samiei, M., Ardalan, M., Rameshrad, M., Ahmadian, E., Cucchiarini, M.: The use of nanomaterials in tissue engineering for cartilage regeneration; current approaches and future perspectives. Int. J. Mol. Sci. 21, 536–560 (2020)

    CAS  Article  Google Scholar 

  74. 74.

    Li, X., Wang, L., Fan, Y., Feng, Q., Cui, F.-Z., Watari, F.: Nanostructured scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part A 101(8), 2424–2435 (2013)

    Article  CAS  Google Scholar 

  75. 75.

    Cavo, M., Scaglione, S.: Scaffold microstructure effects on functional and mechanical performance: integration of theoretical and experimental approaches for bone tissue engineering applications. Mater. Sci. Eng. C 68, 872–879 (2016)

    CAS  Article  Google Scholar 

  76. 76.

    Caetano, G., Violante, R., Sant’Ana, A.-B., Murashima, A.-B., Domingos, M., Gibson, A., Bártolo, P., Frade, M.-A.: Cellularized versus decellularized scaffolds for bone regeneration. Mater. Lett. 182, 318–322 (2016)

    CAS  Article  Google Scholar 

  77. 77.

    de Visser, H.-M., Mastbergen, S.-C.: Metabolic dysregulation accelerates injury-induced joint degeneration, driven by local inflammation; an in vivo rat study. J. Orthop. Res. 36(3), 881–890 (2018)

    Google Scholar 

  78. 78.

    Funda, G., Taschieri, S., Aldo-Bruno, G., Grecchi, E., Paolo, S., Girolamo, D., Del-Fabbro, M.: Nanotechnology scaffolds for alveolar bone regeneration. Matter 13, 201–221 (2020)

    CAS  Article  Google Scholar 

  79. 79.

    Yao, Q.: Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115, 115–127 (2017)

    CAS  Article  Google Scholar 

  80. 80.

    Alves, P.-E., Soares, B.-G., Lins, L.-C., Livi, S., Santos, E.-P.: Controlled delivery of dexamethasone and betamethasone from PLA electrospun fibers: a comparative study. Eur. Polym. J. 117, 1–9 (2019)

    CAS  Article  Google Scholar 

  81. 81.

    Venugopal, E., Rajeswaran, N., Sahanand, K.S., Bhattacharyya, A., Rajendran, S.: In vitro evaluation of phytochemical loaded electrospun gelatin nanofibers for application in bone and cartilage tissue engineering. Biomed. Mater. 14, 015004 (2018)

    Article  Google Scholar 

  82. 82.

    Jacob, J., More, N., Kalia, K., Kapusetti, G.: Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 38, 2 (2018)

    Article  CAS  Google Scholar 

  83. 83.

    Goodarzi, H., Hashemi-Najafabadi, S., Baheiraei, N., Bagheri, F.: Preparation and characterization of nanocomposite scaffolds (collagen/β-TCP/SrO) for bone tissue engineering. Tissue Eng. Reg. Med. 16, 237–251 (2019)

    CAS  Article  Google Scholar 

  84. 84.

    Velasco, M.-A., Narváez-Tovar, C.-A., Garzón-Alvarado, D.-A.: Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering. BioMed Res. Int. 1–21 (2015)

  85. 85.

    Chen, S., He, Z., Xu, G., Xiao, X.: Fabrication of nanofibrous tubular scaffolds for bone tissue engineering. Mater. Lett. 182, 289–293 (2016)

    CAS  Article  Google Scholar 

  86. 86.

    Raisin, S., Belamie, E., Morille, M.: Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage. Biomaterials 104, 223–237 (2016)

    CAS  Article  Google Scholar 

  87. 87.

    Baert, Y., Stukenborg, J.B., Landreh, M., De Kock, J., Jörnvall, H., Söder, O., Goossens, E.: Derivation and characterization of a cytocompatible scaffold from human testis. Hum. Reprod. 30(2), 256–267 (2014)

    Article  CAS  Google Scholar 

  88. 88.

    Ju, J., Gu, Z., Liu, X., Zhang, S., Peng, X., Kuang, T.: Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application. Int. J. Biol. Macromol. 147, 1164–1173 (2020)

    CAS  Article  Google Scholar 

  89. 89.

    Lowe, B., P-Ottensmeyer, M., Xu, C., He, Y., Ye, Q., Troulis, M.: The regenerative applicability of bioactive glass and beta-tricalcium phosphate in bone tissue engineering: a transformation perspective. J. Funct. Biomater. 10, 16–34 (2019)

    CAS  Article  Google Scholar 

  90. 90.

    Seok, J.-M., Rajangam, T., Jeong, J.-E., Cheong, S., Joo, S.-M., Oh, S.-J., Shin, H., Kim, S.-H., Park, S.-A.: Fabrication of 3D plotted scaffold with microporous strands for bone tissue engineering. J. Mater. Chem. B 8(5), 951–960 (2020)

    CAS  Article  Google Scholar 

  91. 91.

    Jing, X., Mi, H.-Y., Salick, M.-R., Cordie, T.-M., Peng, X.-F., Turng, L.-S.: Electrospinning thermoplastic polyurethane/graphene oxide scaffolds for small diameter vascular graft applications. Mater. Sci. Eng. C 49, 40–50 (2015)

    CAS  Article  Google Scholar 

  92. 92.

    McCullen, S.-D., Ramaswamy, S., Clarke, L.-I., Gorga, R.-E.: Nanofibrous composites for tissue engineering applications. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 1(4), 369–390 (2009)

    CAS  Article  Google Scholar 

  93. 93.

    Xu, T., Miszuk, J.-M., Zhao, Y., Sun, H., Fong, H.: Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv. Healthc. Mater. 4(15), 2238–2246 (2015)

    CAS  Article  Google Scholar 

  94. 94.

    Daly, A.-C., Pitacco, P., Nulty, J., Cunniffe, G.-M.: 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Biomaterials 162(57), 34–46 (2018)

    CAS  Article  Google Scholar 

  95. 95.

    Wang, Y., Yang, X., Gu, Z., Qin, H., Li, L., Liu, J., Yu, X.: In vitro study on the degradation of lithium-doped hydroxyapatite for bone tissue engineering scaffold. Mater. Sci. Eng. C 66, 185–192 (2016)

    CAS  Article  Google Scholar 

  96. 96.

    Alper-İşoğlu, I., Bölgen, N., Korkusuz, P., Vargel, I., Hamdi-Çelik, H., Kılıç, E., Güzel, E., Çavuşoğlu, T., Uçkan, D., Pişkin, E.: Stem cells combined 3D electrospun nanofibrous and macrochannelled matrices: a preliminary approach in repair of rat cranial bones. Artif. Cell Nanomed. Biotechnol. 47(1), 1094–1100 (2019)

    Article  CAS  Google Scholar 

  97. 97.

    Tehrani, A.-H., Zadhoush, A., Karbasi, S., Khorasani, S.-N.: Experimental investigation of the governing parameters in the electrospinning of poly(3-hydroxybutyrate) scaffolds: structural characteristics of the pores. J. Appl. Polym. Sci. 118(5), 2682–2689 (2010)

    CAS  Article  Google Scholar 

  98. 98.

    Dhandayuthapani, B., Yoshida, Y., Maekawa, T., Kumar, D.-S.: Polymeric scaffolds in tissue engineering application: a review. Int. J. Polym. Sci. 290602–290622 (2011)

  99. 99.

    Ming, L., Zhipeng, Y., Fei, Y., Feng, R., Jian, W., Baoguo, J., Yongqiang, W., Peixun, Z.: Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect. Artif. Cell Nanomed. Biotechnol. 46(sup1), 336–346 (2018)

    CAS  Article  Google Scholar 

  100. 100.

    Jaspers, M., Vaessen, S.-L., Schayik, P.-V., Voerman, D., Rowan, A.-E., Kouwer, P.-H.-J.: Nonlinear mechanics of hybrid polymer networks that mimic the complex mechanical environment of cells. Nat. Commun. 8, 1 (2017)

    Article  CAS  Google Scholar 

  101. 101.

    Shamsi, M., Karimi, M., Ghollasi, M., Nezafati, N., Shahrousvand, M., Kamali, M., Salimi, A.: In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO2-31CaO-5P2O5)-poly-l-lactic acid nanofibers fabricated by electrospinning method. Mater. Sci. Eng. C 78, 114–123 (2017)

    CAS  Article  Google Scholar 

  102. 102.

    Sepahvandi, A., Eskandari, M., Moztarzadeh, F.: Fabrication and characterization of SrAl2O4: Eu2+Dy3+/CS-PCL electrospun nanocomposite scaffold for retinal tissue regeneration. Mater. Sci. Eng. C 66, 306–314 (2016)

    CAS  Article  Google Scholar 

  103. 103.

    Ospina-Orejarena, A., Vera-Graziano, R., Castillo-Ortega, M.-M., Hinestroza, J.-P., Rodriguez-Gonzalez, M., Palomares-Aguilera, L., Morales-Moctezuma, M., Maciel-Cerda, A.: Grafting collagen on poly(lactic acid) by a simple route to produce electrospun scaffolds, and their cell adhesion evaluation. Tissue Eng. Regener. Med. 13(4), 375–387 (2016)

    CAS  Article  Google Scholar 

  104. 104.

    Abbasian, M., Massoumi, B., Rezaei, R., Samadian, H., Jaymand, M.: Scaffolding polymeric biomaterials: are naturally occurring biological macromolecules more appropriate for tissue engineering? Int. J. Biol. Macromol. 134(1), 673–694 (2019)

    CAS  Article  Google Scholar 

  105. 105.

    Shao, W., He, J., Han, Q., Sang, F., Wang, Q., Chen, L., Cui, S., Ding, B.: A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering. Mater. Sci. Eng. C 67, 599–610 (2016)

    CAS  Article  Google Scholar 

  106. 106.

    Nakano, N., Gohal, C., Duong, A., Ayeni, O.-R.: Outcomes of cartilage repair techniques for chondral injury in the hip—a systematic review. Int. Orthop. 42(10), 2309–2322 (2018)

    Article  Google Scholar 

  107. 107.

    Arfat, Y.-A., Ahmed, J., Ejaz, M.: Polylactide/graphene oxide nanosheets/clove essential oil composite films for potential food packaging applications. Int. J. Biol. Macromol. 107, 194–203 (2018)

    CAS  Article  Google Scholar 

  108. 108.

    Rahmani-Del-Bakhshayesh, A., Annabi, N., Khalilov, R., Akbarzadeh, A., Samiei, M., Alizadeh, E., Alizadeh-Ghodsi, M., Davaran, S., Montaseri, A.: Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif. Cell Nanomed. Biotechnol. 46(4), 691–705 (2018)

    CAS  Article  Google Scholar 

  109. 109.

    Li, W.-J., L-Mauck, R., A_Cooper, J., Yuan, X., Tuan, R.: Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40(8), 1686–1693 (2007)

    Article  Google Scholar 

  110. 110.

    Calejo, I., Costa-Almeida, R., L-Reis, R., E-Gomes, M.: A physiology-inspired multifactorial toolbox in soft-to-hard musculoskeletal interface tissue engineering. Trend Biotechnol. (2019)

  111. 111.

    Wu, S., Wang, Y., Streubel, P.-N., Duan, B.: Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation. Acta Biomater. 62, 102–115 (2017)

    CAS  Article  Google Scholar 

  112. 112.

    Silva, M., Ferreira, F.N., Alves, N.M., Paiva, M.C.: Biodegradable polymer nanocomposites for ligament/tendon tissue engineering. J. Nanobiotechnol. 18(1), 23 (2020)

    CAS  Article  Google Scholar 

  113. 113.

    Wu, S., Peng, H., Li, X., Streubel, P.-N., Liu, Y., Duan, B.: Effect of scaffold morphology and cell co-culture on tenogenic differentiation of HADMSC on centrifugal melt electrospun poly(l-lactic acid) fibrous meshes. Biofabrication 9(4), 044106–044106 (2017)

    Article  CAS  Google Scholar 

  114. 114.

    Matos, A.M., Gonçalves, A.I., El Hajd, A.J., Gomes, M.E.: Magnetic biomaterials and nano-instructive tools as mediators of tendon mechanotransduction. Nanoscale Adv. 2, 140–148 (2020)

    CAS  Article  Google Scholar 

  115. 115.

    Rothrauff, B.-B., Lauro, B.-B., Yang, G., Debski, R.-E., Musahl, V., Tuan, R.-S.: Braided and stacked electrospun nanofibrous scaffolds for tendon and ligament tissue engineering. Tissue Eng. A 23(9–10), 378–389 (2017)

    CAS  Article  Google Scholar 

  116. 116.

    Gögele, C., Hahn, J., Elschner, C., Breier, A., Schröpfer, M., Prade, I., Meyer, M., Schulze-Tanzil, G.: Enhanced growth of lapine anterior cruciate ligament-derived fibroblasts on scaffolds embroidered from poly(l-lactide-co-ε-caprolactone) and polylactic acid threads functionalized by fluorination and hexamethylene diisocyanate cross-linked collagen foams. Int. J. Mol. Sci. 21(3), 1132 (2020)

    Article  CAS  Google Scholar 

  117. 117.

    Demirkıran, N.-D., Havıtçıoğlu, H., Ziylan, A., Cankurt, Ü., Hüsemoğlu, B.: Novel multilayer meniscal scaffold provides biomechanical and histological results comparable to polyurethane scaffolds: an 8 week rabbit study. Acta Orthop. Traumatol. Turc. 53(2), 120–128 (2019)

    Article  Google Scholar 

  118. 118.

    Pagán, A., Aznar-Cervantes, S.D., Pérez-Rigueiro, J., Meseguer-Olmo, L., Cenis, J.L.: Potential use of silkworm gut fiber braids as scaffolds for tendon and ligament tissue engineering. J. Biomed. Mater. Res. B Part B 107B, 2209–2215 (2020)

    Google Scholar 

  119. 119.

    Sensini, A., Cristofolini, L.: Biofabrication of electrospun scaffolds for the regeneration of tendons and ligaments. Materials 11(10), 1963 (2018)

    Article  CAS  Google Scholar 

  120. 120.

    Bacakova, L., Pajorova, J., Bacakova, M., Skogberg, A., Kallio, P., Kolarova, K., Svorcik, V.: Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials 9(2), 164 (2019)

    CAS  Article  Google Scholar 

  121. 121.

    Del-Bakhshayesh, A., Mostafavi, E., Alizadeh, E., Asadi, N., Akbarzadeh, A., Davaran, S.: Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering. ACS Omega 3, 8605–8611 (2018)

    Article  CAS  Google Scholar 

  122. 122.

    Akram, K.-M., Patel, N., Spiteri, M.-A., Forsyth, N.-R.: Lung regeneration: endogenous and exogenous stem cell mediated therapeutic approaches. Int. J. Mol. Sci. 17, 128 (2016)

    Article  CAS  Google Scholar 

  123. 123.

    Basil, M.-C., Katzen, J., Engler, A.-E., Guo, M., Herriges, M.-J., Kathiriya, J.-J., Windmueller, R., Ysasi, A.-B., Zacharias, W.-J., Chapman, H.-A., Kotton, D.-N., Rock, J.-R., Snoeck, H.-W., Vunjak-Novakovic, G., Whitsett, J.-A., Morrisey, E.-E.: The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–504 (2020)

    CAS  Article  Google Scholar 

  124. 124.

    Batchelder, C.-A., Martinez, M.-L., Tarantal, A.-F.: Natural scaffolds for renal differentiation of human embryonic stem cells for kidney tissue engineering. PLoS ONE 10(12), e0143849–e0143849 (2015)

    Article  CAS  Google Scholar 

  125. 125.

    Xiang, X.-L.-Z., Gao, R., Wu, W.-Q., Zhu, X., Li, J., Yi, L.-V.: Liver regeneration using decellularized splenic scaffold: a novel approach in tissue engineering. Hepatobiliary Pancreat. Dis. Int. 14(5), 502–508 (2015)

    Article  Google Scholar 

  126. 126.

    Heydari, Z., Najimi, M., Mirzaei, H., Shpichka, A., Ruoss, M., Farzaneh, Z., Montazeri, L., Piryaei, A., Timashev, P., Gramignoli, R., Nussler, A., Baharvand, H., Vosough, M.: Tissue engineering in liver regenerative medicine: insights into novel translational technologies. Cell 9, 304–332 (2020)

    CAS  Article  Google Scholar 

  127. 127.

    Kamei, K.-I., Yoshioka, M., Terada, S., Tokunaga, Y., Chen, Y.: Three-dimensional cultured liver-on-a-chip with mature hepatocyte-like cells derived from human pluripotent stem cells. Biomed. Microdevices 21(3), 73 (2019)

    Article  CAS  Google Scholar 

  128. 128.

    Michalopoulos, G.-K.: Liver regeneration. J. Cell Physiol. 213(2), 286–300 (2007)

    CAS  Article  Google Scholar 

  129. 129.

    Agarwal, T., Subramanian, B., Kumar-Maiti, T.: Liver tissue engineering: challenges and opportunities. ACS Biomater. Sci. Eng. 5(9), 4167–4182 (2019)

    CAS  Article  Google Scholar 

  130. 130.

    Bhatia, S.-N., Underhill, G.-H., Zaret, K.-S., Fox, I.-J.: Cell and tissue engineering for liver disease. Sci. Transl. Med. 16(6), 245–304 (2014)

    Google Scholar 

  131. 131.

    Cernigliaro, V., Peluso, R., Zedda, B., Silengo, L., Tolosano, E., Pellicano, R., Altruda, F., Fagoonee, S.: Evolving cell-based and cell-free clinical strategies for treating severe human liver diseases. Cell 9(2), 386 (2020)

    CAS  Article  Google Scholar 

  132. 132.

    Asai, A., Aihara, E., Watson, C., Mourya, R., Mizuochi, T., Shivakumar, P., Phelan, K., Mayhew, C., Helmrath, M., Takebe, T., Wells, J., Bezerra, J.-A.: Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells. Development 144(6), 1056–1064 (2017)

    CAS  Article  Google Scholar 

  133. 133.

    Messina, A., Luce, E., Hussein, M., Dubart-Kupperschmitt, A.: Pluripotent-stem-cell-derived hepatic cells: hepatocytes and organoids for liver therapy and regeneration. Cell 9(2), 420 (2020)

    CAS  Article  Google Scholar 

  134. 134.

    Gazia, C., Gaffley, M., Asthana, A., Chaimov, D., Orlando, G.: Scaffolds for Pancreatic Tissue Engineering. Handbook of Tissue Engineering Scaffolds, pp. 765–786. Woodhead Publishing, Cambridge (2019)

    Google Scholar 

  135. 135.

    Pisani, S., Croce, S., Chiesa, E., Dorati, R., Lenta, E., Genta, I., Bruni, G., Mauramati, S., Benazzo, A., Cobianchi, L., Morbini, P., Caliogna, L., Benazzo, M., Avanzini, M.-A., Conti, B.: Tissue engineered esophageal patch by mesenchymal stromal cells: optimization of electrospun patch engineering. Int. J. Mol. Sci. 21(5), 1764 (2020)

    CAS  Article  Google Scholar 

  136. 136.

    Huey-Shan, H., Shan-hui, H.: Surface modification by nanobiomaterials for vascular tissue engineering applications. Curr. Med. Chem. 27(10), 1634–1646 (2020)

    Article  CAS  Google Scholar 

  137. 137.

    Wang, Z., Mithieux, S.M., Weiss, A.S.: Fabrication techniques for vascular and vascularized tissue engineering. Adv. Helathc. Matter. 8, 1900742 (2019a)

    CAS  Article  Google Scholar 

  138. 138.

    Yang, G., Mahadik, B., Choi, J.-Y., Fisher, J.-P.: Vascularization in tissue engineering: fundamentals and state-of-art. Prog. Biomed. Eng. 2(1), 012002 (2020)

    Article  Google Scholar 

  139. 139.

    Luo, J., Qin, L., Zhao, L., Gui, L., Ellis, M.-W., Huang, Y., Kural, M.-H., Clark, J.-A., Ono, S., Wang, J., Yuan, Y., Zhang, S.-M., Cong, X., Li, G., Riaz, M., Lopez, C., Hotta, A., Campbell, S., Tellides, G., Dardik, A., Niklason, L.-E., Qyang, Y.: Tissue-engineered vascular grafts with advanced mechanical strength from human iPSCs. Cell Stem Cell 26(2), 251.e258-261.e258 (2020)

    Article  CAS  Google Scholar 

  140. 140.

    Song, H.-H.-G., Rumma, R.-T., Ozaki, C.-K., Edelman, E.-R., Chen, C.-S.: Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell 22(3), 340–354 (2018)

    CAS  Article  Google Scholar 

  141. 141.

    Pattanaik, S., Arbra, C., Bainbridge, H., Grace-Dennis, S., Fann, S.A., Yost, M.J.: Vascular tissue engineering using scaffold-free prevascular endothelial-fibroblast constructs. Biores. Open Access 8(1), 1–15 (2019)

    CAS  Article  Google Scholar 

  142. 142.

    Chandra, P., Atala, A.: Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications. Clin. Sci. 133(9), 1115–1135 (2019)

    CAS  Article  Google Scholar 

  143. 143.

    Taylor, D.-A.: The future of tissue engineering in heart transplantation. Tex. Heart Inst. J. 46(1), 73–74 (2019)

    Article  Google Scholar 

  144. 144.

    Baaji, K., Pezeshki-Modares, M., Rajabi, S.: Overview on vascular tissue engineering: progress and challenges. Células e Formação Tecidual. RJMS 26(5), 114–130 (2019)

    Google Scholar 

  145. 145.

    Boni, R., Ali, A., Shavandi, A., Clarkson, A.-N.: Current and novel polymeric biomaterials for neural tissue engineering. J. Biomed. Sci. 25(1), 90 (2018)

    CAS  Article  Google Scholar 

  146. 146.

    Gao, G., Kim, H., Soo-Kim, B., Sik-Kong, J., Yeon-Lee, J., Woo-Park, B., Chae, S., Kim, J., Ban, K., Jang, J., Park, H., Cho, D.: Tissue-engineering of vascular grafts containing endothelium and smooth-muscle using triple-coaxial cell printing. Appl. Phys. Rev. 6, 041402 (2019)

    Article  CAS  Google Scholar 

  147. 147.

    Muangsanit, P., Shipley, R.-J., Phillips, J.-B.: Vascularization strategies for peripheral nerve tissue engineering. Anat. Rec. 301(10), 1657–1667 (2018)

    Article  Google Scholar 

  148. 148.

    Zhang, P.-X., Han, N., Kou, Y.-H., Zhu, Q.-T., Liu, X.-L., Quan, D.-P., Chen, J.-G., Jiang, B.-G.: Tissue engineering for the repair of peripheral nerve injury. Neural Regner. Res. 14(1), 51–58 (2019b)

    Article  Google Scholar 

  149. 149.

    Baklaushev, V.-P., Bogush, V.-G., Kalsin, V.-A., Sovetnikov, N.-N., Samoilova, E.-M., Revkova, V.-A., Sidoruk, K.-V., Konoplyannikov, M.-A., Timashev, P.-S., Kotova, S.-L., Yushkov, K.-B., Averyanov, A.-V., Troitskiy, A.-V., Ahlfors, J.-E.: Tissue engineered neural constructs composed of neural precursor cells, recombinant spidroin and prp for neural tissue regeneration. Sci. Rep. 9, 1–8 (2019)

    CAS  Article  Google Scholar 

  150. 150.

    Papadimitriou, L., Manganas, P., Ranella, A., Stratakis, E.: Biofabrication for neural tissue engineering applications. Mater. Today Biol. 6, 100043 (2020)

    CAS  Article  Google Scholar 

  151. 151.

    Bedir, T., Ulag, S., Ustundag, C.-B., Gunduz, O.: 3D bioprinting applications in neural tissue engineering for spinal cord injury repair. Mater. Sci. Eng. C 110, 110741 (2020)

    CAS  Article  Google Scholar 

  152. 152.

    Accardo, A., Cirillo, C., Lionnet, S., Vieu, C., Loubinoux, I.: Interfacing cells with microengineered scaffolds for neural tissue reconstruction. Brain Res. Bull. 152, 202–211 (2019)

    CAS  Article  Google Scholar 

  153. 153.

    Lee-Jenkins, T., Little, D.: Synthetic scaffolds for musculoskeletal tissue engineering: cellular responses to fiber parameters. NPJ Regener. Med. 15, 1–4 (2019)

    Google Scholar 

  154. 154.

    Barajaa, M.A., Nair, L.S., Laurencin, C.T.: Bioinspired scaffold designs for regenerating musculoskeletal tissue interfaces. Regener. Eng. Transl. Med. (2019)

  155. 155.

    Cui, Y., Zhu, T., Li, D., Li, Z., Leng, Y., Ji, X., Liu, H., Wu, D., Ding, J.: Bisphosphonate-functionalized scaffolds for enhanced bone regeneration. Adv. Healthc. Mater. 8, 1901073 (2019)

    CAS  Article  Google Scholar 

  156. 156.

    Li, Z., Wu, N., Cheng, J., Sun, M., Yang, P., Zhao, F., Zhang, J., Duan, X., Fu, X., Zhang, J., Hu, X., Chen, H., Ao, Y.: Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Theranostics 10(11), 5090–5106 (2020)

    CAS  Article  Google Scholar 

  157. 157.

    Stärke, C., Kopf, S., Becker, R.: Indikation und Grenzen des Meniskusersatzes. Der Orthopäde 46(10), 831–838 (2017)

    Article  Google Scholar 

  158. 158.

    Mamatha, P.M., Gopinathan, J., Elakkiya, V., Sathishkumar, M., Sundarrajan, S.-R., Santhosh, K.S., Bhattacharyya, A., Selvakumar, R.: Knee meniscus injury: insights on tissue engineering strategies through retrospective analysis and in silico modeling. J. Indian Inst. Sci. 99, 429–443 (2019)

    Article  Google Scholar 

  159. 159.

    Szojka, A., Lalh, K., Andrews, S.-H.-J., Jomha, N.-M., Osswald, M., Adesida, A.-B.: Biomimetic 3D printed scaffolds for meniscus tissue engineering. Bioprinting 8, 1–7 (2017)

    Article  Google Scholar 

  160. 160.

    Pereira, H., Fatih Cengiz, I., Gomes, S., Espregueira-Mendes, J., Ripoll, P.-L., Monllau, J.-C., Reis, R.-L., Oliveira, J.-M.: Meniscal allograft transplants and new scaffolding techniques. EFORT Open Rev. 4(6), 279–295 (2019)

    Article  Google Scholar 

  161. 161.

    Bilgen, B., Jayasuriya, C.T., Owens, B.D.: Current concepts in meniscus tissue engineering and repair. Adv. Healthc. Mater. 7(11), 1701407 (2018)

    Article  CAS  Google Scholar 

  162. 162.

    Del-Bakhshayesh, A.-R., Asadi, N., Alihemmati, A., Tayefi-Nasrabadi, H., Montaseri, A., Davaran, S., Saghati, S., Akbarzadeh, A., Abedelahi, A.: An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J. Biol. Eng. 13, 85–85 (2019)

    Article  Google Scholar 

  163. 163.

    Luo, C., Xie, R., Zhang, J., Liu, Y., Li, Z., Zhang, Y., Zhang, X., Yuan, T., Chen, Y., Fan, W.: Low temperature 3D printing of tissue cartilage engineered with gelatin methacrylamide. Tissue Eng. Part C Methods (2020)

  164. 164.

    Nossin, Y., Farrell, E., Koevoet, W.-J.-L.-M., Somoza, R.-A., Caplan, A.-I., Brachvogel, B., van-Osch, G.-J.-V.-M.: Angiogenic potential of tissue engineered cartilage from human mesenchymal stem cells is modulated by Indian Hedgehog and Serpin. Front. Bioeng. Biotechnol. 8, 327–327 (2020)

    Article  Google Scholar 

  165. 165.

    Kon, E., Delcogliano, M., Filardo, G., Fini, M., Giavaresi, G., Francioli, S., Martin, I., Pressato, D., Arcangeli, E., Quarto, R., Sandri, M., Marcacci, M.: Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J. Orthop. Res. (2009)

  166. 166.

    Kargozar, S., Mozafari, M., Hamzehlou, S., Brouki-Milan, P., Kim, H.-W., Baino, F.: Bone tissue engineering using human cells: a comprehensive review on recent trends, current prospects, and recommendations. Appl. Sci. 9, 174 (2019)

    CAS  Article  Google Scholar 

  167. 167.

    Jiang, H., Mani, M.-P., Jaganathan, S.-K.: Multifaceted characterization and in vitro assessment of polyurethane-based electrospun fibrous composite for bone tissue engineering. Int. J. Nanomed. 14, 8149–8159 (2019)

    CAS  Article  Google Scholar 

  168. 168.

    Abudula, T., Gauthaman, K., Hammad, A.H., Joshi-Navare, K., Alshahrie, A.A., Bencherif, S.A., Tamayol, A., Memic, A.: Oxygen-releasing antibacterial nanofibrous scaffolds for tissue engineering applications. Polymers 12, 1233–1248 (2020)

    CAS  Article  Google Scholar 

  169. 169.

    Rogowska-Tylmana, J., Locs, J., Salma, I., Woźniak, B., Pilmane, M., Zalite, V., Wojnarowicz, J., Kędzierska-Sar, A., Chudoba, T., Szlązak, K., Chlanda, A., Święszkowski, W., Gedanken, A., Łojkowski, W.: In vivo and in vitro study of a novel nanohydroxyapatite sonocoated scaffolds for enhanced bone regeneration. Mater. Sci. Eng. C 99, 669–684 (2019)

    Article  CAS  Google Scholar 

  170. 170.

    Hakim, J.-S., Rodysill, B.-R., Chen, B.-K., Schmeichel, A.-M., Yaszemski, M.-J., Windebank, A.-J., Madigan, N.-N.: Combinatorial tissue engineering partially restores function after spinal cord injury. J. Tissue Eng. Regner. Med. 13(5), 857–873 (2019)

    CAS  Article  Google Scholar 

  171. 171.

    Roi, A., Cosmina-Ardelean, L., Roi, C., Boia, E.-R., Boia, S., Rusu, L.-C.: Oral bone tissue engineering: advanced biomaterials for cell adhesion, proliferation and differentiation. Matter 12, 2296 (2019)

    CAS  Article  Google Scholar 

  172. 172.

    Li, J., Ebied, M., Xu, J., Zreiqat, H.: Current Approaches to bone tissue engineering: the interface between biology and engineering. Adv. Healthc. Mater. 7, 1701061–1701069 (2017)

    Article  CAS  Google Scholar 

  173. 173.

    Vaquette, C., Saifzadeh, S., Farag, A., Hutmacher, D.-W., Ivanovski, S.: Periodontal tissue engineering with a multiphasic construct and cell sheets. J. Dent. Res. 98(6), 673–681 (2019)

    CAS  Article  Google Scholar 

  174. 174.

    Ivanovski, S., Gronthos, S., Hutmacher, D.-W., Bartold, P.-M.: Multiphasic scaffolds for periodontal tissue engineering. J. Dent. Res. 93(12), 1212–1221 (2014)

    CAS  Article  Google Scholar 

  175. 175.

    Sheikh, Z., Hamdan, N., Ikeda, Y., Grynpas, M., Ganss, B., Glogauer, M.: Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review. Biomater. Res. 21, 9 (2017)

    Article  CAS  Google Scholar 

  176. 176.

    Fawzy El-Sayed, K.-M., Dörfer, C.-E.: Gingival mesenchymal stem/progenitor cells: a unique tissue engineering gem. Stem Cell Int. 2016, 7154327 (2016)

    Google Scholar 

  177. 177.

    Hatayama, T., Nakada, A., Nakamura, H., Mariko, W., Tsujimoto, G., Nakamura, T.: Regeneration of gingival tissue using in situ tissue engineering with collagen scaffold. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 124(4), 348-354.e341 (2017)

    Article  Google Scholar 

  178. 178.

    Zhang, L., Morsi, Y., Wang, Y., Li, Y., Ramakrishna, S.: Review scaffold design and stem cells for tooth regeneration. Jpn. Dent. Sci. Rev. 49, 14–26 (2013)

    Article  Google Scholar 

  179. 179.

    Moussa, D.G.: Aparicio, C.: Present and future of tissue engineering scaffolds for dentin‐pulp complex regeneration. J. Tissue Eng. Regner. Med. (2018)

  180. 180.

    Dong, R., Ma, P.-X., Guo, B.: Conductive biomaterials for muscle tissue engineering. Biomaterials 229, 119584 (2020)

    CAS  Article  Google Scholar 

  181. 181.

    Distler, T., Boccaccini, A.-R.: 3D printing of electrically conductive hydrogels for tissue engineering and biosensors—a review. Acta Biomater. 101, 1–13 (2020)

    CAS  Article  Google Scholar 

  182. 182.

    Choi, B., Kim, S., Fan, J.-B., Kowalski, T., Petrigliano, F., Evseenko, D.: Covalently conjugated transforming growth factor-beta 1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Biomater. Sci. 3, 742–752 (2015)

    CAS  Article  Google Scholar 

  183. 183.

    Chen, W., Chen, S., Morsi, Y., Elhamshary, H., El-newehy, M., Fan, C., Mo, X.: Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl. Mater. Interfaces 8, 24415–24425 (2016)

    CAS  Article  Google Scholar 

  184. 184.

    Almeida, H., Sathy, B.-N., Dudurych, I., Buckley, C.-T., O’Brien, F.-J.: Anisotropic shape-memory alginate scaffolds functionalized with either type I or type II collagen for cartilage tissue engineering. Tissue Eng. Part A 23, 55–68 (2016)

    Article  CAS  Google Scholar 

  185. 185.

    Hajiali, H., Summa, M., Russo, D., Armirotti, A., Brunetti, V., Bertorelli, R., Athanassiou, A., Mele, E.: Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. J. Mater. Chem. B 4, 1686–1695 (2016)

    CAS  Article  Google Scholar 

  186. 186.

    Kataria, K., Gupta, A., Rath, G., Mathur, R.-B., Dhakate, S.-R.: In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int. J. Pharm. 469(1), 102–110 (2014)

    CAS  Article  Google Scholar 

  187. 187.

    Jahromi, M., Razavi, S., Bakhtiari, A.: The advances in nerve tissue engineering: from fabrication of nerve conduit to in vivo nerve regeneration assays. J. Tissue Eng. Regner. Med. 13, 2077–2100 (2019)

    CAS  Article  Google Scholar 

  188. 188.

    Zaszczynska, A., Sajkiewicz, P., Gradys, A.: Piezoelectric scaffolds as smart materials for neural tissue engineering. Polymers 12, 161 (2020)

    CAS  Article  Google Scholar 

  189. 189.

    Rath, G., Hussain, T., Chauhan, G., Garg, T., Goyal, A.-K.: Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. J. Drug Targ. 24(6), 520–529 (2016)

    CAS  Article  Google Scholar 

  190. 190.

    Chan, E.-C., Kuo, S.-M., Kong, A.-M., Morrison, W.-A., Dusting, G.-L., Mitchell, G.-M.: Three dimensional collagen scaffold promotes intrinsic vascularisation for tissue engineering applications. PLoS ONE 11, e0149799 (2016)

    Article  CAS  Google Scholar 

  191. 191.

    Yu, J.R., Navarro, J., Coburn, J.C., Mahadik, B., Molnar, J., Holmes, J.H., Nam, A.J., Fisher, J.P.: Current and future perspectives on skin tissue engineering: key features of biomedical research. Transl. Assess. Clin. Appl. 8(5), 1801471 (2019)

    Google Scholar 

  192. 192.

    Suganya, S., Venugopal, J., Ramakrishna, S., Lakshmi, B.-S., Dev, V.R.G.: Naturally derived biofunctional nanofibrous scaffold for skin tissue regeneration. Int. J. Biol. Macromol. 68, 135–143 (2014)

    CAS  Article  Google Scholar 

  193. 193.

    Longmire, M.N., Swain, K., Vig, K.: Designing scaffolds for skin tissue engineering. FASEB J. 33, 603–604 (2019)

    Google Scholar 

  194. 194.

    Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., Auras, R.: Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 107, 333–366 (2016)

    CAS  Article  Google Scholar 

  195. 195.

    Torres-Giner, S., Gimeno-Alcañiz, J.V., Ocio, M.-J., Lagaron, J.-M.: Optimization of electrospun polylactide-based ultrathin fibers for osteoconductive bone scaffolds. J. Appl. Polym. Sci. 122(2), 914–925 (2011)

    CAS  Article  Google Scholar 

  196. 196.

    Ko, N.-R., Sabbatier, G., Cunningham, A., Laroche, G.: Air-spun PLA nanofibers modified with reductively sheddable hydrophilic surfaces for vascular tissue engineering: synthesis and surface modification. Macromol. Rapid Commun. 35, 447–453 (2014)

    CAS  Article  Google Scholar 

  197. 197.

    Tam-Tran, T., Ain-Abdul-Hamid, Z., Thien-Lai, N., Yew-Cheong, K., Todo, M.: Development and mechanical characterization of bilayer tubular scaffolds for vascular tissue engineering applications. J. Mater. Sci. 55, 2516–2529 (2020)

    Article  CAS  Google Scholar 

  198. 198.

    Wang, Z., Mithieux, S.M., Weiss, A.S.: Fabrication techniques for vascular and vascularized tissue engineering. Adv. Health Matter 8, 1900740 (2019b)

    Google Scholar 

  199. 199.

    Scaffaro, R., Maio, A., Nostro, A.: Poly(lactic acid)/carvacrol-based materials: preparation, physicochemical properties, and antimicrobial activity. Appl. Microbiol. Biotechnol. 104, 1823–1835 (2020)

    CAS  Article  Google Scholar 

  200. 200.

    Gentile, P., Chiono, V., Carmagnola, I., Hatton, P.-V.: An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int. J. Mol. Sci. 15, 3640–3659 (2014)

    CAS  Article  Google Scholar 

  201. 201.

    Storti, G., Giovanna-Scioli, M., Kim, B.-S., Orlandi, A., Cervelli, V.: Adipose-derived stem cells in bone tissue engineering: useful tools with new applications. Stem Cell Int. 3673857–3673875 (2019)

  202. 202.

    Agnes-Mary, S., Giri-Dev, V.-R.: Electrospun herbal nanofibrous wound dressings for skin tissue engineering. J. Text. Inst. 106(8), 886–895 (2015)

    CAS  Article  Google Scholar 

  203. 203.

    Chen, J., Yan, C., Zhu, M., Yao, Q., Shao, C., Lu, W., Wang, J., Mo, X., Gu, P., Fu, Y., Fan, X.: Electrospun nanofibrous SF/P(LLA-CL) membrane: a potential substratum for endothelial keratoplasty. Int. J. Nanomed. 10, 3337–3350 (2015)

    CAS  Google Scholar 

  204. 204.

    Wang, Z., Cui, Y., Wang, J., Yang, X., Wu, Y., Wang, K., Gao, X., Li, D., Li, Y., Zheng, X.-L.: The effect of thick fibers and large pores of electrospun poly(ɛ-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35, 5700–5710 (2014)

    CAS  Article  Google Scholar 

  205. 205.

    Tetteh, G., Khan, A.-S., Delaine-Smith, R.-M., Reilly, G.-C., Rehman, I.-U.: Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. J. Mech. Behav. Biomed. Mater. 39, 95–110 (2014)

    CAS  Article  Google Scholar 

  206. 206.

    Gizdavic-Nikolaidis, M., Ray, S., Bennett, J., Swift, S., Bowmaker, G., Easteal, A.: Electrospun poly(aniline-co-ethyl 3-aminobenzoate)/poly(lactic acid) nanofibers and their potential in biomedical applications. J. Polym. Sci. A Polym. Chem. 49, 4902–4910 (2011)

    CAS  Article  Google Scholar 

  207. 207.

    Pitarresi, G., Fiorica, C., Palumbo, F.-S., Rigogliuso, S., Ghersi, G., Giammona, G.: Heparin functionalized polyaspartamide/polyester scaffold for potential blood vessel regeneration. J. Biomed. Mater. Res. A 102(5), 1334–1341 (2014)

    Article  CAS  Google Scholar 

  208. 208.

    Lowe, B., Hardy, J.G., Walsh, L.J.: Optimizing nanohydroxyapatite nanocomposites for bone tissue engineering. ACS Omega 5, 1–9 (2015)

    Article  CAS  Google Scholar 

  209. 209.

    Tan, H.-X., Borgo, M.-P.-D., Aguilar, M.-I., Forsythe, J.-S., Taylor, J.-M., Crack, P.-J.: The use of bioactive matrices in regenerative therapies for traumatic brain injury. Acta Biomater. 102, 1–12 (2020)

    CAS  Article  Google Scholar 

  210. 210.

    Murphy, A.-R., Haynes, J.-M., Laslett, A.-L., Cameron, N.-R., O’Brien, C.-M.: Three-dimensional differentiation of human pluripotent stem cell-derived neural precursor cells using tailored porous polymer scaffolds. Acta Biomater. 101, 102–116 (2020)

    CAS  Article  Google Scholar 

  211. 211.

    Mao, M., He, J., Li, Z., Han, K.: Multi-directional cellular alignment in 3D guided by electrohydrodynamically-printed microlattices. Acta Biomater. 101, 141–151 (2020)

    CAS  Article  Google Scholar 

  212. 212.

    Tomasz, T., Jakub-Dalibor, R., Eser-Metin, A., Magdalena, R., Jacek, K., Michael, G.: In vitro evaluation of carbon nanotube-based scaffolds for cartilage tissue engineering. J. Nanosci. Nanotechnol. 16(9), 9022–9025 (2016)

    Article  CAS  Google Scholar 

  213. 213.

    Li, J., Song, Z., Gao, L., Shan, H.: Preparation of carbon nanotubes/polylactic acid nanocomposites using a non-covalent method. Polym. Bull. 73(8), 2121–2128 (2016)

    CAS  Article  Google Scholar 

  214. 214.

    Wu, X., Qiu, J., Zhang, W., Zang, L., Sakai, E., Liu, P.: Synthesizing multi-walled carbon nanotube-polymethyl methacrylate conductive composites and poly(lactic acid) based composites. Polym. Compos. 37(2), 503–511 (2016)

    CAS  Article  Google Scholar 

  215. 215.

    Pei, B., Wang, W., Dunne, N., Li, X.: Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects. Nanomaterials 9, 1501 (2019)

    CAS  Article  Google Scholar 

  216. 216.

    Shao, S., Zhou, S., Li, L., Li, J., Luo, C., Wang, J., Li, X., Weng, J.: Osteoblast function on electrically conductive electrospun PLA/MWCNTs nanofibers. Biomaterials 32(11), 2821–2833 (2011)

    CAS  Article  Google Scholar 

  217. 217.

    Kargozar, S., Mozafari, M., Ghenaatgar-Kasbi, M., Baino, F.: Bioactive glasses and glass/polymer composites for neuroregeneration: should we be hopeful? Appl. Sci. 10, 3421 (2020)

    CAS  Article  Google Scholar 

  218. 218.

    Liu, W., Li, Z., Zheng, L., Zhang, X., Liu, P., Yang, T., Han, B.: Electrospun fibrous silk fibroin/poly(l-lactic acid) scaffold for cartilage tissue engineering. Tissue Eng. Reger. Med. 13(5), 516–526 (2016)

    Article  CAS  Google Scholar 

  219. 219.

    Wang, Y., Kim, U.-J., Blasioli, D.J., Kim, H.-J., Kaplan, D.-L.: In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26(34), 7082–7094 (2005)

    CAS  Article  Google Scholar 

  220. 220.

    Yin, A., Bowlin, G.L., Luo, R., Zhang, X., Wang, Y., Mo, X.: Electrospun silk fibroin/poly(l-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration. Regen. Biomater. 3, 239–245 (2016)

    CAS  Article  Google Scholar 

  221. 221.

    Alshomer, F., Chaves, C., Kalaskar, D.: Advances in tendon and ligament tissue engineering: materials perspective. J. Mater. (2018)

  222. 222.

    Ramakrishnan, R., Sreelatha, H.V., Anil, A., Arumugham, S., Varkey, P., Senan, M., Krishnan, L.K.: Human-derived scaffold components and stem cells creating immunocompatible dermal tissue ensuing regulated nonfibrotic cellular phenotypes. ACS Biomater. Sci. Eng. 6, 2740–2756 (2020)

    CAS  Article  Google Scholar 

  223. 223.

    Bagde, A.-D., Kuthe, A.-M., Quazi, S., Gupta, V., Jaiswal-Jyothilal, S., Lande, S.-N., Nagdeve, S.: State of the art technology for bone tissue engineering and drug delivery. IRBM 40(3), 133–144 (2019)

    Article  Google Scholar 

  224. 224.

    Sotoudeh, A., Jahanshahi, G., Jahanshahi, A., Takhtfooladi, M.-A., Shabani, I., Soleimani, M.: Combination of poly l-lactic acid nanofiber scaffold with omentum graft for bone healing in experimental defect in tibia of rabbits. Acta Cirúrgica Brasileira 27(10), 694–702 (2012)

    Article  Google Scholar 

  225. 225.

    Li, H., Pan, S., Xia, P., Chang, Y., Fu, C., Kong, W., Yu, Z., Wang, K., Yang, X., Qi, Z.: Advances in the application of gold nanoparticles in bone tissue engineering. J. Biol. Eng. 14(14), 1–15 (2020)

    CAS  Article  Google Scholar 

  226. 226.

    Sui, G., Yang, X., Mei, F., Hu, X., Chen, G., Deng, X., Ryu, S.: Poly-l-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J. Biomed. Mater. Res. A 82A(2), 445–454 (2007)

    CAS  Article  Google Scholar 

  227. 227.

    Nikolova, M.P., Chavali, M.S.: Recent advances in biomaterials for 3D scaffolds: a review. Bioact. Mater. 4, 271–292 (2019)

    Article  Google Scholar 

  228. 228.

    Wang, T., Ji, X., Jin, L., Feng, Z., Wu, J., Zheng, J., Wang, H., Xu, Z.-W., Guo, L., He, N.: Fabrication and characterization of heparin-grafted poly(l-lactic acid)−chitosan core−shell nanofibers scaffold for vascular gasket. Appl. Mater. Interfaces 5, 3757–3763 (2013)

    CAS  Article  Google Scholar 

  229. 229.

    Haaparanta, A.-M., Järvinen, E., Cengiz, I.-F., Ellä, V., Kokkonen, H., Kiviranta, I., Kellomäki, M.: Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering. J. Mater. Sci. Mater. Med. 25, 1129–1136 (2014)

    CAS  Article  Google Scholar 

  230. 230.

    Unnithan, A.-R., Sasikala, A.-R.-K., Thomas, S.-S., Nejad, A.-G., Cha, Y.-S., Park, C.-H., Kim, C.-S.: Strategic design and fabrication of biomimetic 3D scaffolds: unique architectures of extracellular matrices for enhanced adipogenesis and soft tissue reconstruction. Sci. Rep. 8, 1–2 (2018)

    CAS  Article  Google Scholar 

  231. 231.

    Chung, S., Ingle, N.-P., Montero, G.-A., Kim, S.-H., King, M.-W.: Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning. Acta Biomater. 6, 1958–1967 (2010)

    CAS  Article  Google Scholar 

  232. 232.

    Pant, J., Sundaram, J., Goudie, M.J., Thao-Nguyen, D., Handa, H.: Antibacterial 3D bone scaffolds for tissue engineering application. J. Biomed. Matter Res. (2018)

  233. 233.

    Chang, X., Wang, H., Wu, Z., Lian, X., Cui, F., Weng, X., Yang, B., Qiu, G., Zhang, B.: Fabrication of scaffolds for bone-tissue regeneration. Matter 12, 568 (2019)

    Article  CAS  Google Scholar 

  234. 234.

    Fang, J., Li, P., Lu, X., Fang, L., Lü, X., Ren, F., Nagarajan, S., Bechelany, M., Kalkura, S.-N.: A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomatter. 88(1), 503–513 (2019)

    CAS  Article  Google Scholar 

  235. 235.

    Ranjbar-Mohammadi, M., Bahrami, S.-H.: Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Int. J. Biol. Macromol. 84, 448–456 (2016)

    CAS  Article  Google Scholar 

  236. 236.

    Ranjbar-Mohammadi, M., Bahrami, S.H., Joghataei, M.T.: Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: in vitro evaluation and antibacterial properties. Mater. Sci. Eng. 33, 4935–4943 (2013)

    CAS  Article  Google Scholar 

  237. 237.

    Pina, S., Ribeiro, V.P., Marques, C.F., Maia, F.-R., Silva, T.H., Reis, R.L., Oliveira, J.-M.: Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials 12, 1824 (2019)

    CAS  Article  Google Scholar 

  238. 238.

    Madrid, P., Vrech, S., Sanchez, M., Rodriguez, A.-P.: Advances in additive manufacturing for bone tissue engineering scaffolds. Mater. Sci. Eng. C 100, 631–644 (2019)

    Article  CAS  Google Scholar 

  239. 239.

    Roohani-Esfahani, S.-I.: Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Acta Biomater. 8(1), 302–312 (2012)

    CAS  Article  Google Scholar 

  240. 240.

    Doosti-Telger, M., Mahdavi, F.-S., Moradikha, F., Daryasari, M.-P., Atashgah, R.-B., Dolatyar, B., Javar, H.-A., Seyedjafari, E., Iman, S., Arefian, E., Najafi, F., Abdi, Y., Amini, M.: Nanofibrous scaffolds containing hydroxyapatite and microfluidic-prepared polyamidoamin/BMP-2 plasmid dendriplexes for bone tissue engineering applications. Int. J. Nanomed. 15, 2633–2646 (2020)

    Article  Google Scholar 

  241. 241.

    Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M., Min-Xie, Y.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83, 127–141 (2016)

    CAS  Article  Google Scholar 

  242. 242.

    Ru-Choi, J., Wey-Yong, K., Yin-Nam, H.: Current status and perspectives of human mesenchymal stem cell therapy. Stem Cell Int. (2019)

  243. 243.

    Kwon, S.-G., Kwon, Y.-W., Lee, T.-W., Park, G.-T., Kim, J.-H.: Recent advances in stem cell therapeutics and tissue engineering strategies. Biomater. Res. 22, 36–36 (2018)

    CAS  Article  Google Scholar 

  244. 244.

    Hasan, A., Waters, R., Roula, B., Dana, R., Yara, S., Alexandre, T., Paul, A.: Engineered biomaterials to enhance stem cell-based cardiac tissue engineering and therapy. Macromol. Biosci. 16(7), 958–977 (2016)

    CAS  Article  Google Scholar 

  245. 245.

    Liu, G., David, B.-T., Trawczynski, M., Fessler, R.-G.: Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev. Rep. 16(1), 3–32 (2020)

    Article  Google Scholar 

  246. 246.

    Tan, H.-L., Choo, A.: Opportunities for antibody discovery using human pluripotent stem cells: conservation of oncofetal targets. Int. J. Mol. Sci. 20(22), 5752 (2019)

    CAS  Article  Google Scholar 

  247. 247.

    Ude, C.-C., Miskon, A., Idrus, R.-B.-H., Abu Bakar, M.-B.: Application of stem cells in tissue engineering for defense medicine. Mil. Med. Res. 5(1), 7 (2018)

    Google Scholar 

  248. 248.

    Raju, R., Oshima, M., Inoue, M., Morita, T., Huijiao, Y., Waskitho, A., Baba, O., Inoue, M., Matsuka, Y.: Three-dimensional periodontal tissue regeneration using a bone-ligament complex cell sheet. Sci. Rep. 10(1), 1656 (2020)

    CAS  Article  Google Scholar 

  249. 249.

    Wang, F., Hu, S., Jia, Q., Zhang, L.: Advances in electrospinning of natural biomaterials for wound dressing. J. Nanomater. 2020, 8719859 (2020)

    Google Scholar 

  250. 250.

    Soundararajan, A., Muralidhar, J., Dhandapani, R., Radhakrishnan, J., Manigandan, A.S., Kalyanasundaram, S., Sethuraman, S., Subramanian, A.: Surface topography of polylactic acid nanofibrous mats: influence on blood compatibility. J. Mater. Sci. Mater. Med. 29, 145 (2018)

    Article  CAS  Google Scholar 

  251. 251.

    Kong, B., Mi, S.: Electrospun scaffolds for corneal tissue engineering: a review. Materials 9, 614–634 (2016)

    Article  CAS  Google Scholar 

  252. 252.

    Ercolani, E., Del-Gaudio, C., Bianco, A.: Vascular tissue engineering of small-diameter blood vessels: reviewing the electrospinning approach. J. Tissue Eng. Regner. Med. 9(8), 861–888 (2015)

    CAS  Article  Google Scholar 

  253. 253.

    Wissing, T.B., Haaften, E., Koch, S.E., Ippel, B.D., Kurniawan, N.A., Bouten, C.V.C., Smits, A.I.P.M.: Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages—implications for in situ vascular tissue engineering. Biomater. Sci. 8, 132 (2020)

    CAS  Article  Google Scholar 

  254. 254.

    Sheykhhasan, M., Wong, J., Seifalian, A.M.: Human adipose-derived stem cells with great therapeutic. Curr. Stem Cell Res. Ther. 14(7), 532–548 (2019)

    CAS  Article  Google Scholar 

  255. 255.

    Zhu, C., Ma, X., Xian, L., Zhou, Y., Fan, D.: Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering. Bio-Med. Mater. Eng. 24, 1999–2005 (2014)

    CAS  Article  Google Scholar 

  256. 256.

    Harjunpää, H., Llort-Asens, M., Guenther, C., Fagerholm, S.: Cell Adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 10, 1078 (2019)

    Article  CAS  Google Scholar 

  257. 257.

    Copes, F., Pien, N., Van-Vlierberghe, S., Boccafoschi, F., Mantovani, D.: Collagen-based tissue engineering strategies for vascular medicine. Front. Bioeng Biotechnol. 7, 9246802–9246813 (2019)

    Google Scholar 

  258. 258.

    Zhang, C., Wen, J., Yan, J., Kao, Y., Ni, Z., Cui, X., Wang, H.: In situ growth induction of the corneal stroma cells using uniaxially aligned composite fibrous scaffolds. RSC Adv. 5, 12123–12130 (2015)

    CAS  Article  Google Scholar 

  259. 259.

    E-Pomeroy, J., Helfer, A., Bursac, N.: Biomaterializing the promise of cardiac tissue engineering. Biotechnol. Adv. 42, 107353 (2020)

    Article  CAS  Google Scholar 

  260. 260.

    Mazalevska, O., Struszczyk, M.-H., Krucinska, I.: Design of vascular prostheses by melt electrospinning—structural characterizations. J. Appl. Polym. Sci. 129, 779–792 (2013)

    CAS  Article  Google Scholar 

  261. 261.

    Krawiec, J.-T.: Adult stem cell-based tissue engineered blood vessels: a review. Biomaterials 33, 3388–3400 (2012)

    CAS  Article  Google Scholar 

  262. 262.

    Xue, J., Wu, T., Dai, Y., Xia, Y.: Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem. Rev. 119(8), 5298–5415 (2019)

    CAS  Article  Google Scholar 

  263. 263.

    Ju, Y.-M., Choi, J.-S., Atala, A., Yoo, J.-J.: Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 31, 4313–4321 (2010)

    CAS  Article  Google Scholar 

  264. 264.

    Wang, Y.-H.-J., Jiao, J., Liu, Z., Zhou, Z., Zhao, C., Chang, L.-J., Chen, Y.-E., Ma, P.-X.: Engineering vascular tissue with functional smooth muscle cells derived from human iPS cells and nanofibrous scaffolds. Biomaterials 35(32), 8960–8969 (2014)

    CAS  Article  Google Scholar 

  265. 265.

    Vakilian, S., Norouzi, M., Soufi-Zomorrod, M., Shabani, I., Hosseinzadeh, S., Soleimani, M.-L.: Inermis-loaded nanofibrous scaffolds for wound dressing applications. Tissue Cell 51, 32–38 (2018)

    CAS  Article  Google Scholar 

  266. 266.

    Arun-Richard, C., Venugopal, J., Sundarrajan, S., Ramakrishna, S.: Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed. Mater. 6(1), 015001 (2011)

    Article  CAS  Google Scholar 

  267. 267.

    Suwantong, O., Pankongadisak, P., Deachathai, S., Supaphol, P.: Electrospun poly(l-lactic acid) fiber mats containing a crude Garcinia cowa extract for wound dressing applications. J. Polym. Res 19(6), 1–10 (2012)

    CAS  Article  Google Scholar 

  268. 268.

    Mohiti-Asli, M., Pourdeyhimi, B., Loboa, E.-G.: Novel, silver ion releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. Acta Biomater. 10(5), 2096–2104 (2014)

    CAS  Article  Google Scholar 

  269. 269.

    Sadeghi-Avalshahr, A., Nokhasteh, S., Molavi, A.M., Khorsand-Ghayeni, M., Mahdavi-Shahri, M.: Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications. Mater. Sci. Eng. C 98, 300–310 (2019)

    Article  CAS  Google Scholar 

  270. 270.

    Demarco, P.-Z.-S., De-Colli, M., Radunovic, M., Lazovi’c, V., Ettorre, V., Di-Crescenzo, A., Piattelli, A., Cataldi, A., Fontana, A.: Graphene oxide improves the biocompatibility of collagen membranes in an in vitro model of human primary gingival fibroblasts. Biomed. Mater. 12, 055005 (2017)

    Article  Google Scholar 

  271. 271.

    Al-Bahrawy, M., Ghaffar, K., Gamal, A., El-Sayed, K., Iacono, V.: Effect of inflammation on gingival mesenchymal stem/progenitor cells’ proliferation and migration through microperforated membranes: an in vitro study. Stem Cell Interface 2020, 5373418 (2020)

    CAS  Google Scholar 

  272. 272.

    Liu, Y., Zhou, G., Cao, Y.: Recent progress in cartilage tissue engineering—our experience and future directions. Engineering 3(1), 28–35 (2017)

    CAS  Article  Google Scholar 

  273. 273.

    Lim, T., Tang, Q., Zhu, Z.-Z., Feng, Y., Zhan, S., Wei, X.-J., Zhang, C.-Q.: A decellularized scaffold derived from squid cranial cartilage for use in cartilage tissue engineering. J. Mater. Chem. B 8, 4516–4520 (2020)

    CAS  Article  Google Scholar 

  274. 274.

    Sahoo, S., Toh, S.-L., Goh, J.-C.-H.: A bFGF-releasing silk/PLGA-based biohybrid scaffold for ligament/tendon tissue engineering using mesenchymal progenitor cells. Biomaterials 31(11), 2990–2998 (2010)

    CAS  Article  Google Scholar 

  275. 275.

    Narayanan, G., Vernekar, V.-N., Kuyinu, E.-L., Laurencin, C.-T.: Poly(lactic acid)-based biomaterials for orthopaedic regenerative engineering. Adv. Drug Deliv. Rev. 107, 247–276 (2016)

    CAS  Article  Google Scholar 

  276. 276.

    Faghihi, F., Mirzaei, E., Sarveazad, A., Ai, J., Barough, S.-E., Lotfi, A., Joghataei, M.-T.: Differentiation potential of human bone marrow mesenchymal stem cells into motorneuron-like cells on electrospun gelatin membrane. J. Mol. Neurosci. 55, 845–853 (2015)

    CAS  Article  Google Scholar 

  277. 277.

    Selvakumar, M., Pawar, H.-S., Francis, N.-K., Das, B., Dhara, S., Chattopadhyay, S.: Excavating the role of aloe vera wrapped mesoporous hydroxyapatite frame ornamentation in newly architectured polyurethane scaffolds for osteogenesis and guided bone regeneration with microbial protection. ACS Appl. Mater. Interfaces 8, 5941–5960 (2016)

    CAS  Article  Google Scholar 

  278. 278.

    Lin, W., Chen, M., Qu, T., Li, J., Man, Y.: Three‐dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J. Biomed. Mater. Res. (2019)

  279. 279.

    Giri, T.-K., Alexander, A., Agrawal, M., Saraf, S., Saraf, S., Ajazuddin, A.: Current Status of stem cell therapies in tissue repair and regeneration. Curr. Stem Cell Res. Ther. 14(2), 117–126 (2019)

    CAS  Article  Google Scholar 

  280. 280.

    Katoh, H., Yokota, K., Fehlings, M.G.: Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds. Front. Cell Neurosci. 12, 248 (2019)

    Article  Google Scholar 

  281. 281.

    Ahrem, H., Pretzel, D., Endres, M., Conrad, D., Courseau, J., Muller, H., Jaeger, R., Kaps, C., Klemm, D.-O.: Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants. Acta Biomater. 10, 1341–1353 (2014)

    CAS  Article  Google Scholar 

  282. 282.

    Gu, H., Jiao, Y.: Resveratrol inhibits the IL-1β-induced expression of MMP-13 and IL-6 in human articular chondrocytes via TLR4/MyD88-dependent and -independent signaling cascades. Int. J. Mol. Med. 39(3), 734–740 (2017)

    CAS  Article  Google Scholar 

  283. 283.

    Woodfield, T.-B.-F., Malda, J., de-Wijn, J., Péters, F., Riesle, J., van-Blitterswijk, C.-A.: Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25(18), 4149–4161 (2004)

    CAS  Article  Google Scholar 

  284. 284.

    Yilmaz, E.-N., Zeugolis, D.-I.: Electrospun polymers in cartilage engineering—state of play. Front. Bioeng. Biotechnol. 8, 77 (2020)

    Article  Google Scholar 

  285. 285.

    Dehghan-Baniani, D., Chen, Y., Wang, D., Bagheri, R., Solouk, A.: Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloid Surf. B Biointerfaces 192, 111059 (2020)

    CAS  Article  Google Scholar 

  286. 286.

    Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., Shu, W.: 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater 3, 278–314 (2018)

    Article  Google Scholar 

  287. 287.

    Kim, I.-L., Pfeifer, C.-G., Fisher, M.-B., Saxena, V., Meloni, G.-R., Kwon, M.-Y., Kim, M., Steinberg, D.-R., Mauck, R.-L.: Fibrous scaffolds with varied fiber chemistry and growth factor delivery promote repair in a porcine cartilage defect model. Tissue Eng. Part A 21, 2680–2690 (2015)

    CAS  Article  Google Scholar 

  288. 288.

    Wang, Q., Yan, J., Yang, J., Li, B.: Nanomaterials promise better bone repair. Mater Today 19(8), 451–463 (2016)

    CAS  Article  Google Scholar 

  289. 289.

    Park, D.-Y., Min, B.-H., Park, S.-R., Oh, H.-J., Truong, M.-D., Kim, M., Choi, J.-Y., Park, I.-S., Choi, B.-H.: Engineered cartilage utilizing fetal cartilage-derived progenitor cells for cartilage repair. Sci. Rep. 10(1), 5722 (2020)

    CAS  Article  Google Scholar 

  290. 290.

    Liberski, A., Ayad, N., Wojciechowska, D., Kot, R., Aibibu, D., Hoffmann, G., Cherif, C., Grobelny-Mayer, K., Snycerski, M., Goldmann, H.: Weaving for heart valve tissue engineering. Biotechnol. Adv. 35, 633–656 (2017)

    CAS  Article  Google Scholar 

  291. 291.

    Hardiansyah, A., Tanadi, H., Yang, M.-C., Liu, T.-Y.: Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. J. Polym. Res. 22(4), 1–10 (2015)

    CAS  Article  Google Scholar 

  292. 292.

    Liu, C., Wong, H.-M., Yeung, K.-W.-K., Tjong, S.-C.: Novel electrospun polylactic acid nanocomposite fiber mats with hybrid graphene oxide and nanohydroxyapatite reinforcements having enhanced biocompatibility. Polymers 8(8), 287 (2016)

    Article  CAS  Google Scholar 

  293. 293.

    Islam, S., Chin-Ang, B., Andriyana, A., Muhammad, A.: A review on fabrication of nanofibers via electrospinning and their applications. SN Appl. Sci. 1, 1248 (2019)

    Article  Google Scholar 

  294. 294.

    Gao, X., Han, S., Zhang, R., Liu, G., Wu, J.: Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. J. Mater. Chem. B 7(45), 7075 (2019)

    CAS  Article  Google Scholar 

  295. 295.

    Wang, C., Wang, J., Zeng, L., Qiao, Z., Liu, X., Liu, H., Zhang, J., Ding, J.: Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules 24, 834 (2019)

    Article  CAS  Google Scholar 

  296. 296.

    Han, D., Steckl, A.J.: Coaxial electrospinning formation of complex polymer fibers and their applications. ChemPlusChem 84, 1453–1497 (2019)

    CAS  Article  Google Scholar 

  297. 297.

    Lannutti, J., Reneker, D., Ma, T., Tomasko, D., Farson, D.: Electrospinning for tissue engineering scaffolds. Mater. Sci. Eng. C 27(3), 504–509 (2007)

    CAS  Article  Google Scholar 

  298. 298.

    Chapman, B.S., Mishra, S.R., Tracy, J.B.: Direct electrospinning of titania nanofibers with ethanol. Dalton Trans. 34(1), 21 (2019)

    Google Scholar 

  299. 299.

    Parham, S., Kharazi, A.-Z., Bakhsheshi-Rad, H.-R., Ghayour, H., Ismail, A.-F., Nur, H., Berto, F.: Electrospun nano-fibers for biomedical and tissue engineering applications: a comprehensive review. Mater 13(9), 2153 (2020)

    CAS  Article  Google Scholar 

  300. 300.

    Nikmaram, N., Roohinejad, S., Hashemi, S., Koubaa, M., Barba, F.-J., Abbaspourrad, A., Greiner, R.: Emulsion-based systems for fabrication of electrospun nanofibers: food, pharmaceutical and biomedical applications. RSC Adv. 7(46), 28951–28964 (2017)

    CAS  Article  Google Scholar 

  301. 301.

    Arjmand, S., Partovi-Baghdadeh, A., Hamidi, A., Ranaei-Siadat, S.-O.: Electrospun nanofibers and their application in tissue repair and engineering. J. Shahid Sadoughi Univ. Med. Sci. 27(11), 2036–2051 (2020)

    Google Scholar 

  302. 302.

    Nagam-Hanumantharao, S., Rao, S.: Multi-functional electrospun nanofibers from polymer blends for scaffold tissue engineering. Fiber 7(7), 66 (2019)

    Article  CAS  Google Scholar 

  303. 303.

    Bongiovanni-Abel, S., Montini-Ballarin, F., Abraham, G.-A.: Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions. Nanotechnology 31(17), 172002 (2020)

    Article  CAS  Google Scholar 

  304. 304.

    Kishan, A.P., Cosgriff-Hernandez, E.-M.: Recent advancements in electrospinning design for tissue engineering applications: a review. J. Biomed. Mater. Res. Part A 105, 2892–2905 (2017)

    CAS  Article  Google Scholar 

  305. 305.

    Lubasova, D., Netravali, A.-N.: A novel method for electrospinning nanofibrous 3-D structures. Fibers 8(5), 27 (2020)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Farnaz-Sadat Fattahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fattahi, FS. Nanoscience and nanotechnology in fabrication of scaffolds for tissue regeneration. Int Nano Lett (2020). https://doi.org/10.1007/s40089-020-00318-6

Download citation

Keywords

  • Nanofiber
  • Tissue engineering
  • Extra cellular matrix (ECM)
  • Scaffold