A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants

Abstract

Gold nanoparticles (AuNPs) are one of the prominent metal nanoparticles (NPs) with a broad range of applications in various fields of science and technology. The demand for the use of AuNPs has been increasing on a regular basis. To meet such a demand, intensive research is required on optimizing synthesis approaches. Among various methods reported for the synthesis of AuNPs, biological methods using plant extract have been found to be simple, effective, cheap and environmental friendly because the gold salt is only reduced with biomolecules existing in plant extract. Various methods of AuNPs synthesis using different plant extracts have long been developed. Several techniques have been adopted in the characterization of the synthesized AuNPs. The antibacterial, antioxidant, anticancer and catalytic activities of AuNPs from plant extract have shown promising activities useful for several biomedical applications. This review focuses on the synthesis, optimization conditions, characterization and applications of biosynthesized AuNPs using plant extracts.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Rajeshkumar, S., Bharath, L.V.: Mechanism of plant-mediated synthesis of silver nanoparticles—a review on biomolecules involved, characterisation and antibacterial activity. Chem. Bio. Int. 273, 219–227 (2017)

    CAS  Google Scholar 

  2. 2.

    Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    CAS  Google Scholar 

  3. 3.

    Narayanan, K.B., Sakthivel, N.: Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv. Colloid. Interface. Sci. 169, 59–79 (2011)

    CAS  Google Scholar 

  4. 4.

    Akintelu, S.A., Folorunso, A.S., Ademosun, O.T.: Instrumental characterization and antibacterial investigation of silver nanoparticles synthesized from Garcinia Kolaleaf. J. Drug Deliv. Ther. 9(6-s), 58–64 (2019)

    CAS  Google Scholar 

  5. 5.

    Korbekandi, H., Iravani, S., Abbasi, S.: Production of nanoparticles using organisms. Crit. Rev. Biotechnol. 29, 279–306 (2009)

    CAS  Google Scholar 

  6. 6.

    Thakkar, K.N., Mhatre, S.S., Parikh, R.Y.: Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6, 257–262 (2010)

    CAS  Google Scholar 

  7. 7.

    Huang, J., Li, Q., Sun, D.: Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18, 100–104 (2007)

    Google Scholar 

  8. 8.

    Mukherjee, P., Roy, M., Mandal, B., Dey, G., Mukherjee, P., Ghatak, J., Tyagi, A., Kale, S.: Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19, 075103 (2008)

    CAS  Google Scholar 

  9. 9.

    Xie, J., Lee, J.Y., Wang, D.I., Ting, Y.P.: Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3, 672–682 (2007)

    CAS  Google Scholar 

  10. 10.

    Singaravelu, G., Arockiamary, J., Kumar, V.G., Govindaraju, K.: A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B. Biointerfaces 57, 97–101 (2007)

    CAS  Google Scholar 

  11. 11.

    Juibari, M.M., Abbasalizadeh, S., Jouzani, G.S., Noruzi, M.: Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater. Lett. 65, 1014–1017 (2011)

    CAS  Google Scholar 

  12. 12.

    Shahverdi, A.R., Minaeian, S., Shahverdi, H.R., Jamalifar, H., Nohi, A.A.: Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 42, 919–923 (2007)

    CAS  Google Scholar 

  13. 13.

    Masumeh, N.: Biosynthesis of gold nanoparticles using plant extracts. Bioprocess Biosyst. Eng. 38, 1–14 (2015)

    Google Scholar 

  14. 14.

    Kumar, V., Yadav, S.K.: Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 84, 151–157 (2009)

    CAS  Google Scholar 

  15. 15.

    Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., Sastry, M.: Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 28, 313–318 (2003)

    CAS  Google Scholar 

  16. 16.

    Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M.I., Kumar, R., Sastry, M.: Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3, 461–463 (2002)

    CAS  Google Scholar 

  17. 17.

    Husseiny, M., El-Aziz, M.A., Badr, Y., Mahmoud, M.: Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Act. Part A Mol. Biomol. Spectrosc. 67, 1003–1006 (2007)

    CAS  Google Scholar 

  18. 18.

    Du, L., Jiang, H., Liu, X., Wang, E.: Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5a and its application on direct electrochemistry of hemoglobin. Electrochem. Commun. 9, 1165–1170 (2007)

    CAS  Google Scholar 

  19. 19.

    Pati, P., McGinnis, S., Vikesland, P.J.: Life cycle assessment of “green” nanoparticle synthesis methods. Environ. Eng. Sci. 31, 410–420 (2014)

    CAS  Google Scholar 

  20. 20.

    Abdelmoneim, B., Yongwu, N., Hui, K., Qihe, C.: Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities. AMB Expr. 9(62), 1–9 (2019)

    Google Scholar 

  21. 21.

    Iravani, S.: Green synthesis of metal nanoparticles using plants. Green Chem. 13, 2638–2650 (2011)

    CAS  Google Scholar 

  22. 22.

    Abeer, M.A.E., Monira, R.A.: Gold nanoparticles biosynthesis using zingiber officinale and their impact on the growth and chemical composition of lentil (lens culinaris medic.). Pak. J. Bot. 5, 443–450 (2019)

    Google Scholar 

  23. 23.

    Arpita, D., Yogamoorthy, A., Sundarapandian, S.M.: Green synthesis of gold nanoparticles and evaluation of its cytotoxic property against colon cancer cell line. Life Sci. Inform Publ. 4, 1–17 (2018)

    Google Scholar 

  24. 24.

    Khan, S., Bakht, J., Syed, F.: Green synthesis of gold nanoparticles using Acer Pentapomicum leaves extract its characterization, antibacterial, antifungal and antioxidant bioassay. Digest J. Nanomater. Biostruct. 13, 579–589 (2018)

    Google Scholar 

  25. 25.

    Yoki, Y., Tresye, U., Harits, A.A., Digha, M.: Green method for synthesis of gold nanoparticles using Polyscias scutellarialeaf extract under UV light and their catalytic activity to reduce methylene blue. J. Nanomater. 2017, 1–6 (2017)

    Google Scholar 

  26. 26.

    Ericka, R.L., Blanca, E., Rodríguez, V., Aarón, M.H., César, R.B., Eduardo, L.R., Rosa, E.N., Ricardo, L.E., Ramón, A.I.: Synthesis of gold nanoparticles using Mimosa tenuiflora extract, assessments of cytotoxicity, cellular uptake, and catalysis. Nanoscale Res. Lett. 14, 334–391 (2019)

    Google Scholar 

  27. 27.

    Ahmad, T., Bustam, M.A., Irfan, M., Moniruzzaman, M., Asghar, H.M.A., Bhattacharjee, S.: Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: role of phenolic compounds and flavonoids. Biotechnol. Appl. Biochem. (2019). https://doi.org/10.1002/bab.1787

    Article  Google Scholar 

  28. 28.

    Abdul, W.W., Abdul, K., Smawati, A., Wayan, I.S.: Bio-synthesis of gold nanoparticles through bioreduction using the aqueous extract of Muntingia calabura L. leaves. Orient. J. Chem. 34, 401–409 (2018)

    Google Scholar 

  29. 29.

    Alok, R., Bidhan, M.: Microwave-assisted green synthesis of Gold nanoparticles and its catalytic activity. Int. J. Nano Dimens. 10, 359–367 (2019)

    Google Scholar 

  30. 30.

    Yashvant, R., Gajendra, K.I., Man, S.: Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria. Fut. Sci. 3, 1–26 (2017a)

    Google Scholar 

  31. 31.

    Thanh-Truc, V., Thi, T.N., Thi, H., Dinh-Truong, N., Van-Su, D., Chi-Hien, D., Thanh-Danh, N.: Biosynthesis of silver and gold nanoparticles using aqueous extract from Crinum latifolium leaf and their applications forward antibacterial effect and wastewater treatment. J. Nanomater. (2019). https://doi.org/10.1155/2019/8385935

    Article  Google Scholar 

  32. 32.

    Nasrollahzadeh, M., Sajadi, S.M.: Preparation of Au nanoparticles by Anthemis xylopoda flowers aqueous extract and their application for alkyne/aldehyde/amine type coupling reactions. RSC Adv. 5, 46240–46246 (2015)

    CAS  Google Scholar 

  33. 33.

    Coman, C., Leopold, L.F., Rugină, O.D., Barbu-Tudoran, L., Leopold, N., Tofană, M., Socaciu, C.: Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate. J. Nanopart. Res. 16, 2158–2166 (2014)

    Google Scholar 

  34. 34.

    Basavegowda, N., Sobczak-Kupiec, A., Malina, D., Yathirajan, H.S., Keerthi, V.R., Chandrashekar, N., Dinkar, S., Liny, P.: Plant mediated synthesis of gold nanoparticles using fruit extracts of Ananas comosus (L.) (pineapple) and evaluation of biological activities. Adv. Mat. Lett. 4, 332–337 (2013)

    CAS  Google Scholar 

  35. 35.

    Arunachalam, K.D., Annamalai, S.K.: Chrysopogon zizanioides aqueous extract mediated synthesis, characterization of crystalline silver and gold nanoparticles for biomedical applications. Int. J. Nanomed. 8, 2375–2384 (2013)

    Google Scholar 

  36. 36.

    Kumar, K.M., Mandal, B.K., Sinha, M., Krishnakumar, V.: Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 86, 490–494 (2012)

    Google Scholar 

  37. 37.

    Dauthal, P., Mukhopadhyay, M.: In-vitro free radical scavenging activity of biosynthesized gold and silver nanoparticles using Prunus armeniaca (apricot) fruit extract. J. Nanopart. Res. 15, 1366–1376 (2013)

    Google Scholar 

  38. 38.

    Kaur, B., Markan, M., Singh, M.: Green synthesis of gold nanoparticles from Syzygium aromaticum extract and its use in enhancing the response of a colorimetric urea biosensor. BioNanoSci. 2, 251–258 (2012)

    Google Scholar 

  39. 39.

    Nithya, B., Jayachitra, A.: Antibacterial and antibiofilm activity of plant mediated gold nanoparticles using Garcinia cambogia. Int. J. Pure App. Biosci. 4, 201–210 (2016)

    Google Scholar 

  40. 40.

    Wali, M., Sajjad, A.S., Sumaira, S.: Green synthesis of gold nanoparticles and their characterizations using plant extract of Papaver somniferum. Nano Sci. Nano Technol. 11, 110–118 (2017)

    Google Scholar 

  41. 41.

    Smitha, S., Philip, S., Gopchandran, K.: Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim Acta A Mol. Biomol. Spectrosc. 74, 1–13 (2009)

    Google Scholar 

  42. 42.

    Nji, T.N., Santi, M., Duangkamol, M.: The effect of green synthesized gold nanoparticles on rice germination and roots. Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 35–48 (2017)

    Google Scholar 

  43. 43.

    Elia, P., Raya, Z., Sharon, H., Sofiya, K., Ze’ev, P., Yehuda, Z.: Green synthesis of gold nanoparticles using plant extracts as reducing agents. Int. J. Nanomed. 9, 4007–4021 (2014)

    Google Scholar 

  44. 44.

    Koupaei, M.H., Shareghi, B., Saboury, A.A., Davar, F., Semnani, A., Evini, M.: Green synthesis of zinc oxide nanoparticles and their effect on the stability and activity of proteinase K. RSC Adv. 6(48), 42313–42323 (2016)

    CAS  Google Scholar 

  45. 45.

    Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 54–60 (2000)

    Google Scholar 

  46. 46.

    Rautray, S., Rajananthini, A.S.: Therapeutic potential of green, synthesized gold nanoparticles. BioPharm. Int. 29–38 (2020)

  47. 47.

    Kumar, B., Smita, K., Cumbal, L., Andrade, K.: One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Mater. Sci. Eng. C. (2016). https://doi.org/10.1016/j.msec.2016.02

    Article  Google Scholar 

  48. 48.

    Shankar, S., Jaiswal, L., Aparna, R.S.L., Prasad, R.G.S.V.: Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 137, 75–78 (2014)

    CAS  Google Scholar 

  49. 49.

    Herrero-Calvillo, R., Santoveña-Uribe, A., Esparza, R., Rosas, G.A.: photocatalytic and electrochemical study of gold nanoparticles synthesized by a green approach. Mater. Res. Express 7, 15–19 (2020)

    Google Scholar 

  50. 50.

    Akintelu, S.A., Folorunso, A.S.: Characterization and antimicrobial investigation of synthesized silver nanoparticles from Annona muricataleaf extracts. J. Nanotechnol. Nanomed. Nanobiotechnol. (2019a). https://doi.org/10.24966/NTMB-2044/100022

    Article  Google Scholar 

  51. 51.

    Paques, J.P., Vander, C.J.M., Van, R., Sagis, L.M.C.: Preparation methods of alginate nanoparticles. Adv. Colloid. Interface Sci. 209, 163–171 (2014)

    CAS  Google Scholar 

  52. 52.

    Kalidindi, S.B., Jagirdar, B.R.: Highly monodisperse colloidal magnesium nanoparticles by room temperature digestive ripening. Inorg. Chem. 48, 4524–4529 (2009)

    CAS  Google Scholar 

  53. 53.

    Umer, A.: A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Material. Rio Jan. 3, 197–203 (2014)

    Google Scholar 

  54. 54.

    Folorunso, A., Akintelu, S., Oyebamiji, A.K., Ajayi, S., Babawale, A., Abdusalam, I., Morakinyo, A.: Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J. Nanostruct. Chem. 9, 111–117 (2019). https://doi.org/10.1007/s40097-019-0301-1

    CAS  Article  Google Scholar 

  55. 55.

    Ghosh, P., Han, G., De, M., Kim, C.K., Rotello, V.M.: Gold nanoparticles in delivery applications. Adv. Drug. Del. Rev. 60, 1307–1315 (2008)

    CAS  Google Scholar 

  56. 56.

    Kumar, V.G., Gokavarapu, S.D., Rajeswari, A.: Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloid Surf. B Biointerfaces. 87, 159–163 (2011)

    CAS  Google Scholar 

  57. 57.

    Boisselier, E., Astruc, D.: Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 38, 1759–1782 (2009)

    CAS  Google Scholar 

  58. 58.

    Jain, P.K., Lee, K.S., El-Sayed, I.H., El-Sayed, M.A.: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B. 110, 7238–7248 (2006)

    CAS  Google Scholar 

  59. 59.

    Huang, X., El-Sayed, M.A.: Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010)

    Google Scholar 

  60. 60.

    Narayanan, K.B., Sakthivel, N.: Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater. Charact. 61, 232–1238 (2010)

    Google Scholar 

  61. 61.

    Sperling, R.A., Gil, P.R., Zhang, F., Zanella, M., Parak, W.J.: Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–1908 (2008)

    CAS  Google Scholar 

  62. 62.

    Jyoti, K., Baunthiyal, M., Singh, A.: Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 9(3), 217–227 (2016)

    CAS  Google Scholar 

  63. 63.

    Tran, Q.H., Nguyen, V.Q., Le, A.T.: Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 4(3), 33–49 (2013)

    Google Scholar 

  64. 64.

    Sapsford, K.E., Tyner, K.M., Dair, B.J., Deschamps, J.R., Medintz, I.L.: Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem. 83, 4453–4488 (2011)

    CAS  Google Scholar 

  65. 65.

    Akintelu, S.A., Folorunso, A.S.: Biosynthesis, characterization and antifungal investigation of Ag-Cu nanoparticles from bark extracts of Garcina kola. Stem Cell. 10, 30–37 (2019b)

    Google Scholar 

  66. 66.

    Princy, K.F., Gopinath, A.: Optimization of physicochemical parameters in the biofabrication of gold nanoparticles using marine macroalgae Padina tetrastomatica and its catalytical efficacy in the degradation or organic dyes. J. Nanostruct. Chem. 8, 333–342 (2018)

    CAS  Google Scholar 

  67. 67.

    Zhao, L., Wang, Y., Zhao, X., Deng, Y., Li, Q., Xia, Y.: Greenpreparation of ag-Au bimetallic nanoparticles supported on graphene with alginate for non-enzymatic hydrogen peroxide detection”. Nanomaterials 8, 507–517 (2018)

    Google Scholar 

  68. 68.

    El Giddawy, N., Essam, T.M., Rouby, W.M., Raslan, M., Farghali, A.A.: New approach for enhancing Chlorella vulgaris biomass recovery using ZnAl-layered double hydroxide nanosheets. J. Appl. Phycol. 29, 1399–1407 (2017)

    Google Scholar 

  69. 69.

    El Domany, E.B., Essam, T.M., Ahmed, A.E., Farghali, A.A.: Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. J. Appl. Pharm. Sci. 8, 119–128 (2018)

    Google Scholar 

  70. 70.

    Mabrouk, M., Abou-Zeid, D., Sabra, W.: Application of Plackett-Burman experimental design to evaluate nutritional requirements for poly (γ-glutamic acid) production in batch fermentation by Bacillus licheniformis A13. Afr. J. Appl. Microbiol. Res. 1, 6–18 (2012)

    Google Scholar 

  71. 71.

    Kumari, M.: Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci. Rep. 6, 271–279 (2016)

    Google Scholar 

  72. 72.

    Yasmin, A., Ramesh, K., Rajeshkumar, S.: Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Converg. 1, 1–7 (2014)

    Google Scholar 

  73. 73.

    Bankar, A., Joshi, B., Ravi, A., Kumar, S.: Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B Biointerfaces 80(1), 45–50 (2010). https://doi.org/10.1016/j.colsurfb.2010.05.029

    CAS  Article  Google Scholar 

  74. 74.

    Sheny, D.S., Mathew, J., Philip, D.: Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 79(1), 254–262 (2011)

    CAS  Google Scholar 

  75. 75.

    Rajesh, K.S., Venkat, K.S., Malarkodi, C., Vanaja, M., Paulkumar, M.: Optimized synthesis of gold nanoparticles using green chemical process and its invitro anticancer activity against HepG2 and A549 cell lines. Mech. Mat. Sci. Eng. J. 9, 1–7 (2017)

    Google Scholar 

  76. 76.

    Tomaszewska, E.: Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J. Nanomater. 13, 1–10 (2013)

    Google Scholar 

  77. 77.

    Link, S., El-Sayed, M.A.: Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 54, 331–366 (2003)

    CAS  Google Scholar 

  78. 78.

    Li, Y., Chen, S.M.: The electrochemical properties of acetaminophen on bare glassy carbon electrode. Int. J. Electrochem. Sci. 7, 2175–2187 (2012)

    CAS  Google Scholar 

  79. 79.

    Anuradha, J., Abbasi, T., Abbasi, S.: Green’synthesis of gold nanoparticles with aqueous extracts of neem (Azadirachta indica). Res. J. Biotech. 5, 75–79 (2010)

    CAS  Google Scholar 

  80. 80.

    Yamini, S.Y., Vinay, V.K., Bodaiah, B., Pavani, B.B., Sudhakar, P.: Green synthesis of Silver and Gold nanoparticles using Shorea tumbuggaia bark extract and screening for their Catalytic activity. Int. J. Adv. Sci. Res. Mgt. 4, 180–185 (2019)

    Google Scholar 

  81. 81.

    Latha, D.S., Sampurnam, S., Arulvasu, C., Prabu, P., Govindaraju, K., Narayanan, V.: Biosynthesis and characterization of gold nanoparticle from Justicia adhatoda and its catalytic activity. Mat. Today Proc. 5, 8968–8972 (2018)

    CAS  Google Scholar 

  82. 82.

    Baraton, M.I.: Surface analysis of semiconducting nanoparticles by FTIR spectroscopy, In: Nanocrystalline Metals and Oxides. pp. 165–187. Kluwer Academic Publishers, Boston (2002)

  83. 83.

    Rohman, A., Man, Y.B.C.: Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 43, 886–892 (2010)

    CAS  Google Scholar 

  84. 84.

    Ajitha, B., Ashok, Y., Reddy, P.S.: Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 12–24 (2014)

    Google Scholar 

  85. 85.

    Buhr, E.: Characterization of nanoparticles by scanning electron microscopy in transmission mode. Meas. Sci. Technol. 20, 84020–84035 (2009)

    Google Scholar 

  86. 86.

    Paul, B., Bhuyan, B., Purkayastha, D.D., Dey, M., Dhar, S.S.: Green synthesis of gold nanoparticles using Pogestemon benghalensis (B) O. Ktz. leaf extract and studies of their photocatalytic activity in degradation of methylene blue. Mater. Lett. 148, 37–40 (2015)

    CAS  Google Scholar 

  87. 87.

    Muthukumar, T., Sambandam, B., Aravinthan, A., Sastry, T.P., Kim, J.-H.: Green synthesis of gold nanoparticles and their enhanced synergistic antitumor activity using HepG2 and MCF7 cells and its antibacterial effects. Process Biochem. 51, 384–391 (2016)

    CAS  Google Scholar 

  88. 88.

    Ghodake, G., Deshpande, N., Lee, Y., Jin, E.: Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf. B Biointerfaces 75, 584–589 (2010)

    CAS  Google Scholar 

  89. 89.

    Tahir, K., Nazir, S., Li, B., Khan, A.U., Khan, Z.U.H., Gong, P.Y., Khan, S.U., Ahmad, A.: Nerium oleander leaves extract mediated synthesis of gold nanoparticles and its antioxidant activity. Mater. Lett. 156, 198–201 (2015)

    CAS  Google Scholar 

  90. 90.

    Mata, R., Bhaskaran, A., Sadras, S.R.: Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology 24, 78–86 (2016)

    CAS  Google Scholar 

  91. 91.

    Pasca, R.D., Mocanu, A., Cobzac, S.C., Petean, I., Horovitz, O., Tomoaia-Cotisel, M.: Biogenic syntheses of gold nanoparticles using plant extracts. Part. Sci. Technol. 32, 131–137 (2014)

    CAS  Google Scholar 

  92. 92.

    Ghahremanzadeh, R., Yazdi, S.F., Yousefi, M.: Green synthesis of gold nanoparticles using three medicinal plant extracts as efficient reducing agents. Iran. J. Chem. Chem. Eng. 38, 27–54 (2019)

    Google Scholar 

  93. 93.

    Yashvant, R., Gajendra, K.I., Man, S.: Green synthesis of capped gold nanoparticles and their effect on Gram-positive and Gram-negative bacteria. Future Sci. 3, 1–26 (2017b)

    Google Scholar 

  94. 94.

    Hamed, A.G., Khalid, A.K., Essam, H.I., William, N.S.: Synthesis of gold nanoparticles (AuNPs) using Ricinus communis leaf ethanol extract, their characterization, and biological applications. Nanomaterials 9, 765–778 (2019)

    Google Scholar 

  95. 95.

    Sujitha, M.V., Kannan, S.: Green synthesis of gold nanoparticles using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 102, 15–23 (2013)

    CAS  Google Scholar 

  96. 96.

    Sadeghi, B., Mohammadzadeh, M., Babakhani, B.: Green synthesis of gold nanoparticles using Stevia rebaudiana leaf extracts: characterization and their stability. J. Photochem. Photobiol. B Biol 148, 101–106 (2015)

    CAS  Google Scholar 

  97. 97.

    Khademi-Azandehi, P., Moghaddam, J.: Green synthesis, characterization and physiological stability of gold nanoparticles from Stachys lavandulifolia Vahl extract. Particuology 19, 22–26 (2015)

    CAS  Google Scholar 

  98. 98.

    Godipurge, S., Yallappa, S., Biradar, N.J., Biradar, J., Dhananjaya, B., Hegde, G., Jagadish, K., Hegde, G.: A facile and green strategy for the synthesis of Au, Ag and Au–Ag alloy nanoparticles using aerial parts of R. hypocrateriformis extract and their biological evaluation. Enzyme Microb. Technol. 95, 174–184 (2016a)

    CAS  Google Scholar 

  99. 99.

    Guo, M., Li, W., Yang, F., Liu, H.: Controllable biosynthesis of gold nanoparticles from a Eucommia ulmoides bark aqueous extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 142, 73–79 (2015)

    CAS  Google Scholar 

  100. 100.

    Namvar, F., Azizi, S., Ahmad, M.B., Shameli, K., Mohamad, R., Mahdavi, M., Tahir, P.M.: Green synthesis and characterization of gold nanoparticles using the marine Macroalgae Sargassum muticum. Res. Chem. Intermed. 41, 5723–5730 (2015)

    CAS  Google Scholar 

  101. 101.

    Ravi, J., Neha, M., Prabhakara, R.D., Ajit, P., Vipul, S.: Effect of physical parameters on green synthesis of gold nanoparticles using Zea Mays extract. Int. J. Eng. Adv. Tech. 9, 870–873 (2015)

    Google Scholar 

  102. 102.

    Baharara, J., Ramezani, T., Divsalar, A., Mousavi, M., Seyedarabi, A.: Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna J. Med. Biotech. 8, 75–83 (2016)

    Google Scholar 

  103. 103.

    Islam, N.U., Jalil, K., Shahid, M., Rauf, A., Muhammad, N., Khan, A., Shah, M.R., Khan, M.A.: Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2015.06.025

    Article  Google Scholar 

  104. 104.

    Lei, W., Jianwei, X., Ye, Y., Han, L., Feng, L.: Synthesis of gold nanoparticles from leaf Panax notoginseng and its anticancer activity in pancreatic cancer PANC-1 cell lines. Art. Cells Nanomed. Biotechnol. 47, 1216–1223 (2019)

    Google Scholar 

  105. 105.

    Huu, D., Derek, F., Gerrard, E.J.P.: Green synthesis of gold nanoparticles from waste macadamia nut shells and their antimicrobial activity against Escherichia coli and Staphylococcus epidermis. Int. J. Res. Med. Sci. 7(4), 1171–1177 (2019a)

    Google Scholar 

  106. 106.

    Bali, R., Harris, A.T.: Biogenic synthesis of Au nanoparticles using vascular plants. Ind. Eng. Chem. Res. 49, 12762–12772 (2010)

    CAS  Google Scholar 

  107. 107.

    Alaa, A.A.A., Yazan, A., Mazhar, S.A.Z., Khalid, M.A., Bahaa, A., Osama, A.A., Alaaldin, M.A., Mourad, B., David, J.E.: Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials 8, 1–15 (2018)

    CAS  Google Scholar 

  108. 108.

    Priyanka, S., Santosh, P., Jørgen, G., Sanja, T., Venkata, R.S.S.M., Abida, S., Anders, T., Aiga, M., Ramona, V.M., Anders, E.D., Anders, B., Ivan, M.: Green synthesis of gold and silver nanoparticles from Cannabis sativa(industrial hemp) and their capacity for biofilm inhibition. Int. J. Nanomed. 13, 3571–3591 (2018)

    Google Scholar 

  109. 109.

    Jafarizad, A., Safaee, K., Gharibian, S., Omidi, Y., Ekinci, D.: Biosynthesis and in-vitro study of gold nanoparticles using Mentha and Pelargonium Extracts. Procedia Mater. Sci. 11, 224–230 (2015)

    CAS  Google Scholar 

  110. 110.

    Parsons, J.G., Armendariz, V., Lopez, M.L., Jose-Yacaman, M., Gardea-Torresdey, J.L.: Kinetics and thermodynamics of the bioreduction of potassium tetrachloroaurate using inactivated oat and wheat tissues. J. Nanopart. Res. 12, 1579–1588 (2014)

    Google Scholar 

  111. 111.

    Suman, T.Y., Rajasree, S.R.R., Ramkumar, R., Rajthilak, C., Perumal, P.: The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 118, 11–16 (2014)

    CAS  Google Scholar 

  112. 112.

    Joseph, S., Mathew, B.: Microwave assisted facile green synthesis of silver and gold nanocatalysts using the leaf extract of Aerva lanata. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 136, 1371–1379 (2015)

    CAS  Google Scholar 

  113. 113.

    Islam, N.U., Jalil, K., Shahid, M., Muhammad, N., Rauf, A.: Pistacia integerrima gall extract mediated green synthesis of gold nanoparticles and their biological activities. Arabian J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2015.02.014

    Article  Google Scholar 

  114. 114.

    Zhang, Y., Kohler, N., Zhang, M.: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23, 1553–1561 (2002)

    CAS  Google Scholar 

  115. 115.

    Schwegmann, H., Feitz, A.J., Frimmel, F.H.: Influence of the zeta potential on the sorption and toxicity of iron oxide nanoparticles on S. cerevisiae and E. coli. J Colloid Interface Sci. 347, 43–48 (2010)

    CAS  Google Scholar 

  116. 116.

    Lata, K., Kumar, J.A., Naik, L.: Gold nanoparticles: preparation, characterization, and its stability in buffer. Nanotrends J. Nanotechnol. Appl. 17, 1–10 (2015)

    Google Scholar 

  117. 117.

    Babakhani, P., Bridge, J., Phenrat, T., Doong, R., Whittle, K.: Aggregation and sedimentation of shattered graphene oxide nanoparticles in dynamic environments: a solid-body rotational approach. Environ. Sci. Nano (2018). https://doi.org/10.1039/C8EN00443A

    Article  Google Scholar 

  118. 118.

    Babakhani, P., Doong, R., Bridge, J.: Significance of early and late stages of coupled aggregation and sedimentation in the fate of nanoparticles: measurement and modelling. Environ. Sci. Technol. (2018). https://doi.org/10.1021/acs.est.7b05236

    Article  Google Scholar 

  119. 119.

    Dale, A.L., Lowry, G.V., Casman, E.A.: Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution. Environ. Sci. Nano 4, 89–104 (2017)

    CAS  Google Scholar 

  120. 120.

    Wilma, N.S.C., Ana, E.T.L., Dábila, A.S., Mateus, A.A., Fábio, D.P., Valéria, S.V., Valtencir, Z., Luciano, N., Edson, M.C., Roberto, L.S.: Synthesis and characterization of gold nanoparticles combined with curcumin and its effects on experimentally induced osteoarthritis. Ciência Rural 2, 1–7 (2017)

    Google Scholar 

  121. 121.

    Vijayakumar, S.: In vitro stability studies on gold nanoparticles with different stabilizing agents. Int. J. Curr. Sci. 11, 84–93 (2014)

    Google Scholar 

  122. 122.

    Farah, A.A., Jinap, S., Rashidah, S., Nor, A.Y., Nurul, H.A.R., Noordiana, N., Nuzul, N.J.: Etlingera elatior-mediated synthesis of gold nanoparticles and their application as electrochemical current enhancer. Molecules 24, 1–15 (2019)

    Google Scholar 

  123. 123.

    Tripathi, A., Kumari, S., Kumar, A.: Toxicity evaluation of pH dependent stable Achyranthes aspera herbal gold nanoparticles. Appl. Nanosci. 6, 61–69 (2016)

    CAS  Google Scholar 

  124. 124.

    Lowry, G.V., Hill, R.J., Harper, S., Rawle, A.F., Hendren, C.O., Klaessig, F.: Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environ. Sci. Nano. 3, 953–965 (2016)

    CAS  Google Scholar 

  125. 125.

    Nara, S.: Colloidal gold probe based rapid immunochromatographic strip assay for cortisol. Anal. Chimica. Acta. 682, 66–71 (2010)

    CAS  Google Scholar 

  126. 126.

    Geovana, D.S., Ana, C.T., Jaqueline, D.G., Tatiana, J.C.P., João, V.P., Marcos, M.D.: Antibacterial acivity of gold and silver nanoparticles impregnated with antimicrobial agents. Revista Saúde e Pesquisa 6, 227–235 (2013)

    Google Scholar 

  127. 127.

    Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T.: The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005)

    CAS  Google Scholar 

  128. 128.

    Chitrani, B.D., Ghazani, A.A., Chan, W.C.W.: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano. Lett. 6, 662–668 (2006)

    Google Scholar 

  129. 129.

    Nam, J.M., Thaxton, C.S., Mirkin, C.A.: Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1981 (2003)

    CAS  Google Scholar 

  130. 130.

    Nikparast, Y., Saliani, M.: synergistic effect between phyto-synthesized silver nanoparticles and ciprofloxacin antibiotic on some pathogenic bacterial strains. J. Med. Bacteriol. 7, 36–43 (2018)

    CAS  Google Scholar 

  131. 131.

    Venilla, S., Suresh, S., Lakshmipathy, M., Mohd, R.J., Jiban, P.: Eco-friendly approach in synthesis of silver nanoparticles and evaluation of optical, surface morphological and antimicrobial properties. J. Nanostruct. Chem. 9, 153–162 (2019)

    Google Scholar 

  132. 132.

    Akter, M., Sikder, M.T., Rahman, M.M., Ullah, A.K.A.M., Hossain, K.F.B., Banik, S., Hosokawa, T., Saito, T., Kurasaki, M.: A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J. Adv. Res. 9, 1–16 (2018)

    CAS  Google Scholar 

  133. 133.

    Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X., Jiang, X.: The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33, 2327–2333 (2012)

    CAS  Google Scholar 

  134. 134.

    Bankar, A., Joshi, B., Kumar, A.R., Zinjarde, S.: Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B Biointerfaces 80, 45–50 (2010)

    CAS  Google Scholar 

  135. 135.

    Senthilkumar, S., Kashinath, L., Ashok, M., Rajendran, A.: Antibacterial properties and mechanism of gold nanoparticles obtained from Pergularia Daemia leaf extract. J. Nanomed. Res. 6, 1–7 (2017)

    Google Scholar 

  136. 136.

    Vinay, S.P., Udayabhanu, N.G.: Biomedical applications of Durio zibethinus extract mediated gold nanoparticles as antimicrobial, antioxidant and anticoagulant activity. Int. J. Biosen. Bioelectron. 5, 150–155 (2019)

    Google Scholar 

  137. 137.

    Dudhane, A.A., Waghmode, S.R., Dama, L.B., Mhaindarkar, V.P., Sonawane, A., Katariya, S.: Synthesis and characterization of gold nanoparticles using plant extract of Terminalia arjuna with antibacterial activity. Int. J. Nanosci. Nanotechnol. 15, 75–82 (2019)

    CAS  Google Scholar 

  138. 138.

    Francis, S., Koshy, E., Mathew, B.: Microwave aided synthesis of silver and gold nanoparticles and their antioxidant, antimicrobial and catalytic potentials. J. Nanostruct. 8, 55–66 (2018)

    CAS  Google Scholar 

  139. 139.

    Basavegowda, N., Kumar, G.D., Tyliszczak, B., Wzorek, Z., Sobczak, K.A.: One-step synthesis of highly-biocompatible spherical gold nanoparticles using Artocarpus heterophyllus Lam. (jackfruit) fruit extract and its effect on pathogens. Ann. Agric. Environ. Med. 22, 84–89 (2015)

    CAS  Google Scholar 

  140. 140.

    Khan, A.U., Yuan, Q., Wei, Y., Khan, G.M., Khan, Z.U.H., Khan, S., Ali, F., Tahir, K., Ahmad, A., Khan, F.U.: Photocatalytic and antibacterial response of biosynthesized gold nanoparticles. J. Photochem. Photobiol. B 162, 273–277 (2016)

    Google Scholar 

  141. 141.

    Vijaya, K.P., Mary, J.K.S., Prakash, K.S.: Synthesis of gold nanoparticles using Xanthium Strumarium leaves extract and their antimicrobial studies: a green approach. Rasayan J. Chem. 11, 1544–1551 (2018)

    Google Scholar 

  142. 142.

    Huu, D., Derek, F., Gerrard, E.J.P.: Green synthesis of gold nanoparticles from waste macadamia nut shells and their antimicrobial activity against Escherichia coli and Staphylococcus epidermis. Int. J. Res. Med. Sci. 7, 1171–1177 (2019b)

    Google Scholar 

  143. 143.

    Poojary, M.M., Passamonti, P., Adhikari, A.V.: Green synthesis of silver and gold nanoparticles using root bark extract of Mammea suriga: characterization, process optimization, and their antibacterial activity. BioNano Sci. 6, 110–120 (2016)

    Google Scholar 

  144. 144.

    Uthaya, C.J., Arivukkarasi, T., Annadurai, G.: Plant extract mediated synthesis of gold nanoparticle and its antibacterial activity. Int. J. Sci. Eng. 3, 17–21 (2018)

    Google Scholar 

  145. 145.

    Larayetan, R.O., Mike, O.O., Omobola, O.O., Alexander, S., Anthony, I.O.: Synthesis, characterization, antimalarial, antitrypanocidal and antimicrobial properties of gold nanoparticle. Green Chem. Lett. Rev. 12, 61–68 (2019)

    Google Scholar 

  146. 146.

    Wisut, C., Derek, F., Chun, C.F., Gerrard, E.J.P.: Biogenic synthesis of gold nanoparticles from waste watermelon and their antibacterial activity against Escherichia coli and Staphylococcus epidermidis. Int. J. Res. Med. Sci. 7, 2499–2505 (2019)

    Google Scholar 

  147. 147.

    Bhau, B., Ghosh, S., Puri, S., Borah, B., Sarmah, D., Khan, R.: Green synthesis of gold nanoparticles from the leaf extract of Nepenthes khasiana and antimicrobial assay. Adv. Mater. Lett. 6, 55–58 (2015)

    Google Scholar 

  148. 148.

    Rajan, A., Vilas, V., Philip, D.: Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J. Mol. Liq. 212, 331–339 (2015)

    CAS  Google Scholar 

  149. 149.

    Bindhu, M., Umadevi, M.: Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett. 120, 122–125 (2014)

    CAS  Google Scholar 

  150. 150.

    Ganesan, R., Prabu, H.G.: Synthesis of gold nanoparticles using herbal Acorus calamus rhizome extract and coating on cotton fabric for antibacterial and UV blocking applications. Arabian J. Chem. (2015). https://doi.org/10.1016/j.arabjc.2014.12.017

    Article  Google Scholar 

  151. 151.

    Gopinath, K., Kumaraguru, S., Bhakyaraj, K., Mohan, S., Venkatesh, K.S., Esakkirajan, M., Kaleeswarran, P., Alharbi, N.S., Kadaikunnan, S., Govindarajan, M.: Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog. 101, 1–11 (2016)

    CAS  Google Scholar 

  152. 152.

    Godipurge, S., Yallappa, S., Biradar, N.J., Biradar, J., Dhananjaya, B., Hegde, G., Jagadish, K., Hegde, G.: A facile and green strategy for the synthesis of Au, Ag and Au–Ag Alloy nanoparticles using aerial parts of R. hypocrateriformis extract and their biological evaluation. Microb. Technol. 95, 174–184 (2016b)

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sunday Adewale Akintelu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akintelu, S.A., Olugbeko, S.C. & Folorunso, A.S. A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. Int Nano Lett 10, 237–248 (2020). https://doi.org/10.1007/s40089-020-00317-7

Download citation

Keywords

  • Synthesis
  • Optimization
  • Characterization
  • Antibacterial activities
  • Gold nanoparticles