Optical and electronic properties of zigzag boron nitride nanotube (6,0): DFT study


The optical and electronic properties of boron nitride nanotubes have been studied using the full potential linear augmented plane wave method in the framework of density functional theory. The electronic properties such as band structure and density of states have been investigated using the generalized gradient approximation. In addition, the optical parameters of boron nitride nanotube (6,0) have been investigated such as real and imaginary parts of the dielectric function, electron energy loss function, refractive index, extinction coefficient, and optical conductivity. The obtained values are in better agreement with the available experimental data.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Montaghemi, A., Hadipour, H., Bagherpour, F., Yazdani, A., Mahdavifar, S.: Nonconventional screening of Coulomb interaction in hexagonal boron nitride nanoribbons. Phys. Rev. B 101, 075427 (2020)

    CAS  Article  Google Scholar 

  2. 2.

    Sevik, C., Kinaci, A., Haskins, J.B., Çağın, T.: Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011)

    Article  Google Scholar 

  3. 3.

    Ferrabone, M., Kirtman, B., Rérat, M., Orlando, R., Dovesi, R.: Polarizability and hyperpolarizability of BN zigzag nanotubes calculated by the coupled perturbed Kohn–Sham scheme. Phys. Rev. B 83, 235421 (2011)

    Article  Google Scholar 

  4. 4.

    Margulis, A., Muryumin, E.E., Gaiduk, E.A.: Second-order nonlinear optical response of zigzag BN single-walled nanotubes. Phys. Rev. B 82, 235426 (2010)

    Article  Google Scholar 

  5. 5.

    Fan, L., Yao, W.: Effect of transverse and longitudinal defects on mechanical properties of graphene-h-BN/copper vertically-stacked heterostructure. Comput. Mater. Sci. 183, 109810 (2020)

    CAS  Article  Google Scholar 

  6. 6.

    Li, B.-J., Yang, G.-Y., Huang, L.-J., Wang, T.-Y., Ren, N.-F.: Effects of BN layer on photoelectric properties and stability of flexible Al/Cu/ZnO multilayer thin film. Ceram. Int. 46(10), 14686 (2020)

    CAS  Article  Google Scholar 

  7. 7.

    Thomas, S., Manju, M.S., Ajith, K.M., Lee, S.U., Asle Zaeem, M.: Strain-induced work function in h-BN and BCN monolayers. Phys. E Low-dimension. Syst. Nanostruct. 123, 114180 (2020)

    CAS  Article  Google Scholar 

  8. 8.

    Altoe, M.V.P., Sprunck, J.P., Gabriel, J.-C.P., Bradley, K.: Nanococoon seeds for BN nanotube growth. J. Mater. Sci. 38, 4805 (2003)

    CAS  Article  Google Scholar 

  9. 9.

    Peyghan, A.A., Aslanzadeh, S.A., Samiei, A.: Ammonia borane reaction with a BN nanotube: a hydrogen storage route. Monatsh. Chem. 145, 1083 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    Shen, H.: Mechanical properties and electronic structures of one BN nanotube under radial compression. Front. Mater. Sci. China 3, 201 (2009)

    Article  Google Scholar 

  11. 11.

    Li, X.M., et al.: Theoretical explorations on the armchair BN nanotube with defects. J. Nanopart. Res. 11, 395 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    Jeong, B., Cho, H., Yu, M.-F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Modeling and measurement of geometrically nonlinear damping in a microcantilever-nanotube system. ACS Nano 7(10), 8547 (2013)

    CAS  Article  Google Scholar 

  13. 13.

    Arenal, R., Bezanilla, A.L.: In situ formation of carbon nanotubes encapsulated within boron nitride nanotubes via electron irradiation. ACS Nano 8(8), 8419 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    Zhou, S., Yang, X., Xu, X., Dou, S.X., Du, Y., Zhao, J.: Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. J. Am. Chem. Soc. 142(1), 308 (2020)

    CAS  Article  Google Scholar 

  15. 15.

    Mananghaya, M.R.: A simulation of hydrogen adsorption/desorption in metal-functionalized BN nanotube. Mater. Chem. Phys. 240, 122159 (2020)

    CAS  Article  Google Scholar 

  16. 16.

    Bevilacqua, A.C., Rupp, C.J., Baierle, R.J.: First principles study on defectives BN nanotubes for water splitting and hydrogen storage. Chem. Phys. Lett. 653, 161 (2016)

    CAS  Article  Google Scholar 

  17. 17.

    Baei, M.T., Kanani, Y., Rezaei, V.J., Soltani, A.: Adsorption phenomena of gas molecules upon Ga-doped BN nanotubes: a DFT study. Appl. Surf. Sci. 295, 18 (2014)

    CAS  Article  Google Scholar 

  18. 18.

    Ţălu, Ş., et al.: Microstructure and Tribological Properties of FeNPs@a-C: H films by micromorphology analysis and fractal geometry. Ind. Eng. Chem. Res. 54(33), 8212–8218 (2015)

    Article  Google Scholar 

  19. 19.

    Zare, M., et al.: Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting. Sci. Rep. 8, 10870 (2018)

    Article  Google Scholar 

  20. 20.

    Ghodselahi, T., Vesaghi, M.A., Gelali, A., Zahrabi, H., Solaymani, S.: Morphology, optical and electrical properties of Cu–Ni nanoparticles in a-C: H prepared by co-deposition of RF-sputtering and RF-PECVD. Appl. Surf. Sci. 258(2), 727–731 (2011)

    CAS  Article  Google Scholar 

  21. 21.

    Achour, A., et al.: Influence of plasma functionalization treatment and gold nanoparticles on surface chemistry and wettability of reactive-sputtered TiO2 thin films. Appl. Surf. Sci. 458, 678–685 (2018)

    CAS  Article  Google Scholar 

  22. 22.

    Dejam, L., et al.: Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films. Chem. Phys. Lett. 719, 78–90 (2019)

    CAS  Article  Google Scholar 

  23. 23.

    Nejati, K., Hosseinian, A., Vessally, E., Bekhradnia, A., Edjlali, L.: A comparative DFT study on the interaction of cathinone drug with BN nanotubes, nanocages, and nanosheets. Appl. Surf. Sci. 422, 763 (2017)

    CAS  Article  Google Scholar 

  24. 24.

    Izadyar, S., Hantehzadeh, M.R., Ghoranneviss, M., Elahi, S.M., Boochani, A.: Prevailing Cu-C nanocomposite over Cu NPs for CNTs growth: a catalyst study on silicon substrate. Silicon 10(3), 907 (2018)

    CAS  Article  Google Scholar 

  25. 25.

    Mendi, R.T., Sarmazdeh, M.M., Boochani, A., Elahi, S.M., Naderi, S.: Optical properties of pure and TM-doped single-walled ZnO nanotubes (8,0) (TM = V and Co) by first principles calculations. Mod. Phys. Lett. B 30(01), 1550255 (2016)

    CAS  Article  Google Scholar 

  26. 26.

    Naseri, N., et al.: How morphological surface parameters are correlated with electrocatalytic performance of cobalt-based nanostructures. J. Ind. Eng. Chem. 57, 97–103 (2018)

    CAS  Article  Google Scholar 

  27. 27.

    Dalouji, V., Asareh, N., Hashemizadeh, S.A., Solaymani, S.: Carbon films embedded by nickel nanoparticles: the effect of deposition time on Berthelot-type hopping conduction parameters. Eur. Phys. J. Plus 131, 442 (2016)

    Article  Google Scholar 

  28. 28.

    Sjöstedt, E., Nordström, L., Singh, D.J.: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114(1), 15 (2000)

    Article  Google Scholar 

  29. 29.

    Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43(3), 1993 (1991)

    CAS  Article  Google Scholar 

  30. 30.

    Schwarz, K., Blaha, P., Madsen, G.K.H.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1–2), 71 (2002)

    Article  Google Scholar 

  31. 31.

    Perdew, J.P., et al.: Restoring the density-gradient expansion for exchange in solids and surfaces. PRL 100(13), 136406 (2008)

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sara Sadat Parhizgar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sotudeh, M., Boochani, A., Parhizgar, S.S. et al. Optical and electronic properties of zigzag boron nitride nanotube (6,0): DFT study. Int Nano Lett 10, 293–301 (2020). https://doi.org/10.1007/s40089-020-00314-w

Download citation


  • DFT
  • BN nanotube
  • Li impurity
  • Electronic
  • Optical property