Abstract
The optical and electronic properties of boron nitride nanotubes have been studied using the full potential linear augmented plane wave method in the framework of density functional theory. The electronic properties such as band structure and density of states have been investigated using the generalized gradient approximation. In addition, the optical parameters of boron nitride nanotube (6,0) have been investigated such as real and imaginary parts of the dielectric function, electron energy loss function, refractive index, extinction coefficient, and optical conductivity. The obtained values are in better agreement with the available experimental data.
This is a preview of subscription content, log in to check access.







References
- 1.
Montaghemi, A., Hadipour, H., Bagherpour, F., Yazdani, A., Mahdavifar, S.: Nonconventional screening of Coulomb interaction in hexagonal boron nitride nanoribbons. Phys. Rev. B 101, 075427 (2020)
- 2.
Sevik, C., Kinaci, A., Haskins, J.B., Çağın, T.: Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011)
- 3.
Ferrabone, M., Kirtman, B., Rérat, M., Orlando, R., Dovesi, R.: Polarizability and hyperpolarizability of BN zigzag nanotubes calculated by the coupled perturbed Kohn–Sham scheme. Phys. Rev. B 83, 235421 (2011)
- 4.
Margulis, A., Muryumin, E.E., Gaiduk, E.A.: Second-order nonlinear optical response of zigzag BN single-walled nanotubes. Phys. Rev. B 82, 235426 (2010)
- 5.
Fan, L., Yao, W.: Effect of transverse and longitudinal defects on mechanical properties of graphene-h-BN/copper vertically-stacked heterostructure. Comput. Mater. Sci. 183, 109810 (2020)
- 6.
Li, B.-J., Yang, G.-Y., Huang, L.-J., Wang, T.-Y., Ren, N.-F.: Effects of BN layer on photoelectric properties and stability of flexible Al/Cu/ZnO multilayer thin film. Ceram. Int. 46(10), 14686 (2020)
- 7.
Thomas, S., Manju, M.S., Ajith, K.M., Lee, S.U., Asle Zaeem, M.: Strain-induced work function in h-BN and BCN monolayers. Phys. E Low-dimension. Syst. Nanostruct. 123, 114180 (2020)
- 8.
Altoe, M.V.P., Sprunck, J.P., Gabriel, J.-C.P., Bradley, K.: Nanococoon seeds for BN nanotube growth. J. Mater. Sci. 38, 4805 (2003)
- 9.
Peyghan, A.A., Aslanzadeh, S.A., Samiei, A.: Ammonia borane reaction with a BN nanotube: a hydrogen storage route. Monatsh. Chem. 145, 1083 (2014)
- 10.
Shen, H.: Mechanical properties and electronic structures of one BN nanotube under radial compression. Front. Mater. Sci. China 3, 201 (2009)
- 11.
Li, X.M., et al.: Theoretical explorations on the armchair BN nanotube with defects. J. Nanopart. Res. 11, 395 (2009)
- 12.
Jeong, B., Cho, H., Yu, M.-F., Vakakis, A.F., McFarland, D.M., Bergman, L.A.: Modeling and measurement of geometrically nonlinear damping in a microcantilever-nanotube system. ACS Nano 7(10), 8547 (2013)
- 13.
Arenal, R., Bezanilla, A.L.: In situ formation of carbon nanotubes encapsulated within boron nitride nanotubes via electron irradiation. ACS Nano 8(8), 8419 (2014)
- 14.
Zhou, S., Yang, X., Xu, X., Dou, S.X., Du, Y., Zhao, J.: Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals. J. Am. Chem. Soc. 142(1), 308 (2020)
- 15.
Mananghaya, M.R.: A simulation of hydrogen adsorption/desorption in metal-functionalized BN nanotube. Mater. Chem. Phys. 240, 122159 (2020)
- 16.
Bevilacqua, A.C., Rupp, C.J., Baierle, R.J.: First principles study on defectives BN nanotubes for water splitting and hydrogen storage. Chem. Phys. Lett. 653, 161 (2016)
- 17.
Baei, M.T., Kanani, Y., Rezaei, V.J., Soltani, A.: Adsorption phenomena of gas molecules upon Ga-doped BN nanotubes: a DFT study. Appl. Surf. Sci. 295, 18 (2014)
- 18.
Ţălu, Ş., et al.: Microstructure and Tribological Properties of FeNPs@a-C: H films by micromorphology analysis and fractal geometry. Ind. Eng. Chem. Res. 54(33), 8212–8218 (2015)
- 19.
Zare, M., et al.: Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting. Sci. Rep. 8, 10870 (2018)
- 20.
Ghodselahi, T., Vesaghi, M.A., Gelali, A., Zahrabi, H., Solaymani, S.: Morphology, optical and electrical properties of Cu–Ni nanoparticles in a-C: H prepared by co-deposition of RF-sputtering and RF-PECVD. Appl. Surf. Sci. 258(2), 727–731 (2011)
- 21.
Achour, A., et al.: Influence of plasma functionalization treatment and gold nanoparticles on surface chemistry and wettability of reactive-sputtered TiO2 thin films. Appl. Surf. Sci. 458, 678–685 (2018)
- 22.
Dejam, L., et al.: Correlation between surface topography, optical band gaps and crystalline properties of engineered AZO and CAZO thin films. Chem. Phys. Lett. 719, 78–90 (2019)
- 23.
Nejati, K., Hosseinian, A., Vessally, E., Bekhradnia, A., Edjlali, L.: A comparative DFT study on the interaction of cathinone drug with BN nanotubes, nanocages, and nanosheets. Appl. Surf. Sci. 422, 763 (2017)
- 24.
Izadyar, S., Hantehzadeh, M.R., Ghoranneviss, M., Elahi, S.M., Boochani, A.: Prevailing Cu-C nanocomposite over Cu NPs for CNTs growth: a catalyst study on silicon substrate. Silicon 10(3), 907 (2018)
- 25.
Mendi, R.T., Sarmazdeh, M.M., Boochani, A., Elahi, S.M., Naderi, S.: Optical properties of pure and TM-doped single-walled ZnO nanotubes (8,0) (TM = V and Co) by first principles calculations. Mod. Phys. Lett. B 30(01), 1550255 (2016)
- 26.
Naseri, N., et al.: How morphological surface parameters are correlated with electrocatalytic performance of cobalt-based nanostructures. J. Ind. Eng. Chem. 57, 97–103 (2018)
- 27.
Dalouji, V., Asareh, N., Hashemizadeh, S.A., Solaymani, S.: Carbon films embedded by nickel nanoparticles: the effect of deposition time on Berthelot-type hopping conduction parameters. Eur. Phys. J. Plus 131, 442 (2016)
- 28.
Sjöstedt, E., Nordström, L., Singh, D.J.: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114(1), 15 (2000)
- 29.
Troullier, N., Martins, J.L.: Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43(3), 1993 (1991)
- 30.
Schwarz, K., Blaha, P., Madsen, G.K.H.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1–2), 71 (2002)
- 31.
Perdew, J.P., et al.: Restoring the density-gradient expansion for exchange in solids and surfaces. PRL 100(13), 136406 (2008)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sotudeh, M., Boochani, A., Parhizgar, S.S. et al. Optical and electronic properties of zigzag boron nitride nanotube (6,0): DFT study. Int Nano Lett 10, 293–301 (2020). https://doi.org/10.1007/s40089-020-00314-w
Received:
Accepted:
Published:
Issue Date:
Keywords
- DFT
- BN nanotube
- Li impurity
- Electronic
- Optical property