The structural and optical band gap energy evaluation of nano TiO2 powders by diffuse reflectance spectroscopy prepared via combustion method

Abstract

Nanocrystalline TiO2 powders with different optical band gap have been successfully prepared using solution combustion method starting directly from titanium metal. The emphasis is placed on the role of fuel urea on the variations of optical band gap which is obtained from DRS data in the range of 190–1100 nm. The samples were characterized with XRD, FTIR, FESEM, and DRS. It is shown that the powders calcined at 800 ℃ are predominantly anatase and minor rutile according to XRD results where the crystallite size ranges from 13.2 nm to 22 nm. The size of powders can affect the photo catalytic activity of TiO2 where the surface/ volume ratio determines the available sites for electrons to migrate. The micronized aggregated powders composed of sub-particles in the order of less than 100 nm have no preferred morphology based-on FESEM images. FTIR analysis satisfactorily matched with the standard data. The results of diffuse reflectance spectroscopy (DRS) accompanied with mathematical calculations extracted the values of optical direct band gap of TiO2 powders in the range of 3.53 to 3.6 eV which is in the border of UV and Vis part of electromagnetic radiation. Overall, optical band gap and crystallite size can be controlled by fuel in combustion method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Manzoor, M., Rafiq, A., Ikram, M., Nafees, M., Ali, S.: Structural, optical, and magnetic study of Ni-doped TiO 2 nanoparticles synthesized by sol–gel method. Int. Nano Lett. 8, 1–8 (2018)

    Article  Google Scholar 

  2. 2.

    Kannangara, Y.Y., Wijesena, R., Rajapakse, R.M.G., de Silva, K.M.N.: Heterogeneous photocatalytic degradation of toluene in static environment employing thin films of nitrogen-doped nano-titanium dioxide. Int. Nano Lett. 8, 31–39 (2018)

    CAS  Article  Google Scholar 

  3. 3.

    Ghasemifard, M., Ghamari, M., Iziy, M.: Effect of different fuels on surface morphology and microstructure of TiO 2–(Ti 0.98 Si 0.2) O 2 composite nanoparticles. Ceram. Int. 42, 10099–10104 (2016)

    CAS  Article  Google Scholar 

  4. 4.

    Mani, A.D., Raju, B.R., Xanthopoulos, N., Ghosal, P., Sreedhar, B., Subrahmanyam, C.: Effect of fuels on combustion synthesis of TiO2–Towards efficient photocatalysts for methylene blue oxidation and Cr (VI) reduction under natural sunlight. Chem. Eng. J. 228, 545–553 (2013)

    Article  Google Scholar 

  5. 5.

    Ma, X., Xue, L., Li, X., Yang, M., Yan, Y.: Controlling the crystalline phase of TiO2 powders obtained by the solution combustion method and their photocatalysis activity. Ceram. Int. 41, 11927–11935 (2015)

    CAS  Article  Google Scholar 

  6. 6.

    Munir, S., Shah, S.M., Hussain, H.: Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Mater. Des. 92, 64–72 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    Akshay, V.R., Arun, B., Mandal, G., Mutta, G.R., Chanda, A., Vasundhara, M.: Observation of optical band-gap narrowing and enhanced magnetic moment in co-doped sol–gel-derived anatase TiO2 nanocrystals. J. Phys. Chem. C. 122, 26592–26604 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    Nagaraj, G., Irudayaraj, A., Josephine, R.L.: Tuning the optical band gap of pure TiO2 via photon induced method. Optik (Stuttg). 179, 889–894 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    Sharma, R., Sarkar, A., Jha, R., Sharma, A.K., Sharma, D.: Sol-gel–mediated synthesis of TiO2 nanocrystals: structural, optical, and electrochemical properties. Int. J. Appl. Ceram. Technol. 17, 1400–1409 (2020)

    CAS  Article  Google Scholar 

  10. 10.

    Sethy, N.K., Arif, Z., Mishra, P.K., Kumar, P.: Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Process. Synth. 9, 171–181 (2020)

    Article  Google Scholar 

  11. 11.

    Yuangpho, N., Le, S.T.T., Treerujiraphapong, T., Khanitchaidecha, W., Nakaruk, A.: Enhanced photocatalytic performance of TiO2 particles via effect of anatase–rutile ratio. Phys. E Low Dimensional Syst. Nanostruct. 67, 18–22 (2015)

    CAS  Article  Google Scholar 

  12. 12.

    Gao, Y., Wang, H., Wu, J., Zhao, R., Lu, Y., Xin, B.: Controlled facile synthesis and photocatalytic activity of ultrafine high crystallinity TiO2 nanocrystals with tunable anatase/rutile ratios. Appl. Surf. Sci. 294, 36–41 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    Zhang, Z., Wang, C.-C., Zakaria, R., Ying, J.Y.: Role of particle size in nanocrystalline TiO2-based photocatalysts. J. Phys. Chem. B. 102, 10871–10878 (1998)

    CAS  Article  Google Scholar 

  14. 14.

    Nagaveni, K., Hegde, M.S., Ravishankar, N., Subbanna, G.N., Madras, G.: Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir 20, 2900–2907 (2004)

    CAS  Article  Google Scholar 

  15. 15.

    Dette, C., Pérez-Osorio, M.A., Kley, C.S., Punke, P., Patrick, C.E., Jacobson, P., Giustino, F., Jung, S.J., Kern, K.: TiO2 anatase with a bandgap in the visible region. Nano Lett. 14, 6533–6538 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    Lee, D.Y., Kim, J.-T., Park, J.-H., Kim, Y.-H., Lee, I.-K., Lee, M.-H., Kim, B.-Y.: Effect of Er doping on optical band gap energy of TiO2 thin films prepared by spin coating. Curr. Appl. Phys. 13, 1301–1305 (2013)

    Article  Google Scholar 

  17. 17.

    Lopez, T., Moreno, J.A., Gomez, R., Bokhimi, X., Wang, J.A., Yee-Madeira, H., Pecchi, G., Reyes, P.: Characterization of iron-doped titania sol–gel materials. J. Mater. Chem. 12, 714–718 (2002)

    CAS  Article  Google Scholar 

  18. 18.

    Goutam, S.P., Saxena, G., Singh, V., Yadav, A.K., Bharagava, R.N., Thapa, K.B.: Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem. Eng. J. 336, 386–396 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    Kumar, P.M., Badrinarayanan, S., Sastry, M.: Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358, 122–130 (2000)

    CAS  Article  Google Scholar 

  20. 20.

    Ambika, S., Sundrarajan, M.: [EMIM] BF4 ionic liquid-mediated synthesis of TiO2 nanoparticles using Vitex negundo Linn extract and its antibacterial activity. J. Mol. Liq. 221, 986–992 (2016)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Misagh Ghamari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 4.

Table 4 Nomenclature used in this paper

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rashidi, P., Ghamari, M. & Ghasemifard, M. The structural and optical band gap energy evaluation of nano TiO2 powders by diffuse reflectance spectroscopy prepared via combustion method. Int Nano Lett (2020). https://doi.org/10.1007/s40089-020-00313-x

Download citation

Keywords

  • TiO2
  • Urea
  • Band gap
  • Combustion
  • Anatase