Vanadium effect on the electronic and thermoelectric properties of ScPtBi compound


The half-Heusler ScPtBi compound, known with non-magnetic semi-metallic electronic behavior, mainly has topological properties in spin–orbit calculations. In the present study, the electronic structure and thermoelectric performance of this compound are studied under the substitution of vanadium, magnetic metal, instead of Sc atoms. Calculations were carried out in the framework of density functional theory (DFT) by applying Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) and corrected Tran and Blaha-modified Becke–Johnson potential (TB-mBJ) as well as solving Boltzmann semi-classical equations. The V atom’s entry leads to the change in the non-magnetic electronic structure of ScPtBi to a ferromagnetic half-metal with a 100% spin polarization at the Fermi level. The degenerated d orbitals of vanadium have caused severe electronic states near the Fermi level, which has led to a shift in the trend of the Seebeck coefficient from positive to negative values, and the p-type behavior can be seen for both ScPtBi and VPtBi modes. The highest Seebeck of these compounds are 198 and 169 µVK−1, respectively. The obtained maximum figure of merit (ZT) values also show that the ScPtBi is suitable for thermoelectric applications at room temperatures, while VPtBi will perform well at high temperatures. Our calculations have shown that the ScPtBi has high hardness with 202.09 GPa bulk modulus.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Qiu, P., Huang, X., Chen, X., Chen, L.: Enhanced thermoelectric performance by the combination of alloying and doping in TiCoSb based half-Heusler compounds. J. Appl. Phys. 106, 103703 (2009)

    Google Scholar 

  2. 2.

    Rausch, E., Balke, B., Ouardi, S., Felser, C.: Long-term stability of(Ti/Zr/Hf)CoSb1_xSnx thermoelectric p-type half-Heusler compounds upon thermal cycling. Energy Technol. 3, 1217 (2015)

    CAS  Google Scholar 

  3. 3.

    Zheng, X., Liu, C., Yan, Y., Wang, Q.: A review of thermoelectrics research—recent developments and potentials for sustainable and renewable energy applications. Renew. Sustain. Energy Rev. 32, 486 (2014)

    CAS  Google Scholar 

  4. 4.

    Chauhan, N.S., Bathula, S., Vishwakarma, A., Bhardwaj, R., Gahtori, B., Kumar, A., Dhar, A.: Vanadium doping induced resonant energy levels for the enhancement of thermoelectric performance in Hf-free ZrNiSn half-Heusler alloys. ACS Appl. Energy Mater. 1, 2, 757 (2018)

    Google Scholar 

  5. 5.

    Eliassen, S.N.H., Katre, A., Madsen, G.K.H., Persson, C., Løvvik, O.M., Berland, K.: Lattice thermal conductivity of TixZryHf1−xyNiSn half-Heusler alloys calculated from first principles: key role of nature of phonon modes. Phys. Rev. B. 95, 045202 (2017)

    Google Scholar 

  6. 6.

    Schrade, M., Berland, K., Eliassen, S.N.H., Guzik, M.N., E-Bonet, C., Sørby, M.H., Jenuš, P., Hauback, B.C., Tofan, R., Gunnæs, A.E., Persson, C., Løvvik, O.M., Finstad, T.G.: The role of grain boundary scattering in reducing the thermal conductivity of polycrystallineXNiSn (X= Hf, Zr, Ti) half-Heusler Alloys. Sci. Rep. 7, 13760 (2017)

    Google Scholar 

  7. 7.

    Kundu, A., Ghosh, S., Banerjee, R., Ghosh, S., Sanyal, B.: New quaternary half-metallic ferromagnets with large Curie temperatures. Sci. Rep. 7, 1803 (2017)

    Google Scholar 

  8. 8.

    Zou, T., Jia, T., Xie, W., Zhang, Y., Widenmeyera, M., Xiao, X., Weidenkaf, A.: Band structure modification of the thermoelectric Heusler-phase TiFe2Sn via Mn substitution. Phys. Chem. Chem. Phys. 19, 18273 (2017)

    CAS  Google Scholar 

  9. 9.

    Yousuf, S., Gupta, D.C.: Insight into Mechanical Properties and Thermoelectric efficiency of Zr2CoZ (Z = Si, Ge) Heusler Alloys. Mater. Res. Express 4, 116307 (2017)

    Google Scholar 

  10. 10.

    Yousuf, S., Gupta, D.C.: Thermoelectric and mechanical properties of gapless Zr2MnAl Compound. Indian J. Phys. 91, 33 (2017)

    CAS  Google Scholar 

  11. 11.

    Liang, J., Cheng, L., Zhang, J., Liu, H., Zhang, Zh: Maximizing the thermoelectric performance of topological insulator Bi2Te3 films in the few-quintuple layer regime. Nanoscale 8, 8855 (2016)

    CAS  Google Scholar 

  12. 12.

    Chadov, S., Qi, X., Kübler, J., Fecher, G.H., Felser, C., Zhang, S.C.: Tunable multifunctional topological insulators in ternary Heusler compounds. Nat. Mater. 9, 541 (2010)

    CAS  Google Scholar 

  13. 13.

    Ding, G., Gao, G.Y., Yu, L., Ni, Y., Yao, K.: Thermoelectric properties of half-Heusler topological insulators MPtBi(M5Sc, Y, La) induced by strain. J. Appl. Phys. 119, 025105 (2016)

    Google Scholar 

  14. 14.

    Snyder, G., Toberer, E.: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)

    CAS  Google Scholar 

  15. 15.

    Shi, X., Chen, L., Uher, C.: Recent advances in high-performance bulk thermoelectric materials. Int. Mater. Rev. 61, 379 (2016)

    CAS  Google Scholar 

  16. 16.

    Al-Sawai, W., Lin, H., Markiewicz, R.S., Wray, L.A., Xia, Y., Xu, S.-Y., Hasan, M.Z., Bansil, A.: Topological electronic structure in half-Heusler topological insulators. Phys. Rev. B. 82, 125208 (2010)

    Google Scholar 

  17. 17.

    Nowak, B., Kaczorowski, D.: 209Bi NMR in topologically trivial and nontrivial half-Heusler bismuthides. J. Phys. Chem. C. 120(38), 21797 (2016)

    CAS  Google Scholar 

  18. 18.

    Kaura, K., Dhimanb, Sh, Kumara, R.: Emergence of thermoelectricity in Half Heusler topological semimetals with strain. Phys. Lett. A 316, 339 (2016)

    Google Scholar 

  19. 19.

    Hou, Zh, Wang, Y., Liu, E., Zhang, H., Wang, W., Wu, G.: Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single Crystal. Appl. Phys. Lett. 107, 202103 (2015)

    Google Scholar 

  20. 20.

    Pavlosiuk, O., Kaczorowski, D., Wiśniewski, P.: Shubnikov-de Haas oscillations, weak antilocalization effect and large linear magnetoresistance in the putative topological superconductor LuPdBi. Sci. Rep. 5, 9158 (2015)

    Google Scholar 

  21. 21.

    Tafti, F.F., Fujii, T., Juneau-Fecteau, A., RenedeCotret, S., Doiron-Leyraud, N., Asamitsu, A., Taillefer, L.: Superconductivity in the noncentrosymmetric half-Heusler compound LuPtBi: a candidate for topological superconductivity. Phys. Rev. B. 87, 184504 (2013)

    Google Scholar 

  22. 22.

    Carrete, J., Li, W., Mingo, N., Wang, S., Curtarolo, S.: Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014)

    Google Scholar 

  23. 23.

    Carrete, J., Mingo, N., Wang, S., Curtarolo, S.: Nanograined half-Heusler semiconductors as advanced thermoelectrics: an Ab initio high-throughput statistical study. Adv. Funct. Mater. 24, 7427 (2014)

    CAS  Google Scholar 

  24. 24.

    Xu, N., Xu, Y., Zhu, J.: Topological insulators for thermoelectrics. NPJ Quant. Mat. 2, 5 (2017)

    Google Scholar 

  25. 25.

    Baldomir, D., Faílde, D.: On behind the physics of the thermoelectricity of topological insulators. Sci. Rep. 9, 6324 (2019)

    Google Scholar 

  26. 26.

    Al-Hossainy, A.F., Eid, M.R., Zoromba, M.S.: Prediction of molecular characteristics and molecular spectroscopy of hydrochloric acid-doped poly(ortho-anthranilic acid-co-para nitroaniline) thin film. J. Electron. Mat. 48, 8107 (2019)

    CAS  Google Scholar 

  27. 27.

    Zoromba, M.S., Bassyouni, M., Abdel-Aziz, M.H., Al-Hossainy, A.F., Salah, N., Al-Ghamdi, A.A., Eid, M.R.: Structure and photoluminescence characteristics of mixed nickel–chromium oxides nanostructures. Appl. Phys. A. 125, 642 (2019)

    Google Scholar 

  28. 28.

    Abdel-Aziz, M.H., Zoromba, MSh, Bassyouni, M., Zwawi, M., Alshehri, A.A., Al-Hossainy, A.F.: Synthesis and characterization of Co-Al mixed oxide nanoparticles via thermal decomposition route of layered double hydroxide. J. Mol. Struct. 1206, 127679 (2020)

    CAS  Google Scholar 

  29. 29.

    Ibrahim, S.M., Bourezgui, A., Abd-Elmageed, A.A.I., Kacem, I., Al-Hossainy, A.F.: Structural and optical characterization of novel [ZnKCMC]TF for optoelectronic device applications. J. Mat. Sci. Mat. Electron. 31, 8690 (2020)

    CAS  Google Scholar 

  30. 30.

    Schwarz, K., Blaha, P., Madsen, G.K.H.: Comput. Phys. Commun. 147, 71 (2002)

    Google Scholar 

  31. 31.

    Sjöstedt, E., Nordström, L., Singh, D.J.: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15 (2000)

    Google Scholar 

  32. 32.

    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: wien2k: an augmented plane wave plus local orbitals program for calculating crystal properties. University of Wien, Austria (2001)

    Google Scholar 

  33. 33.

    KhThabet, H., Al-Hossainy, A.F., Imran, M.: Opt. Mater. 105, 109915 (2020)

    Google Scholar 

  34. 34.

    Abd-Elmageed, A.A.I., Ibrahim, S.M., Bourezgui, A., Al-Hossainy, A.F.: New J. Chem. 44, 8621 (2020)

    CAS  Google Scholar 

  35. 35.

    Abd-Elmageed, A.A.I., et al.: Opt. Mater. 99, 109593 (2020)

    CAS  Google Scholar 

  36. 36.

    Al-Hossainy, A.F., Eid, M.R., Zoromba, M.S.: Mat. Chem. Phys. 232, 180 (2019)

    CAS  Google Scholar 

  37. 37.

    Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Google Scholar 

  38. 38.

    Koller, D., Tran, F., Blaha, P.: Improving the modified Becke-Johnson exchange potential. Phys. Rev. B 85, 155109 (2012)

    Google Scholar 

  39. 39.

    Gschneidner, K.A., Bünzli, J.C.G., Pecharsky, V.K.: Handbook on the physics and chemistry of rare earths, vol. 36, pp. 173–233. Elsevier, New York (2007)

    Google Scholar 

  40. 40.

    Madesan, G.K.H., Sing, D.J.: BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006)

    Google Scholar 

  41. 41.

    Shi, H., et al.: Prospective high thermoelectric performance of the heavily p-doped half-Heusler compound CoVSn. Phys. Rev. B. 95(19), 195207 (2017)

    Google Scholar 

  42. 42.

    Wang, Y., et al.: First-principles studies of polar perovskite KTaO3 surfaces: structural reconstruction, charge compensation, and stability diagram. Phys. Chem. Chem. Phys. 20(27), 18515 (2018)

    CAS  Google Scholar 

  43. 43.

    Warburton, R.E., Iddir, H., Curtiss, L.A., Greeley, J.: Thermodynamic stability of low-and high-index spinel LiMn2O4 surface terminations. ACS Appl. Mater. Interfaces. 8(17), 11108 (2016)

    CAS  Google Scholar 

  44. 44.

    Baima, J., Goniakowski, J., Noguera, C., Koltsov, A., Mataigne, J.M.: Surface thermodynamics of silicate compounds: the case of Zn2SiO4 (001) surfaces and thin films. Phys. Chem. Chem. Phys. 21(24), 13287 (2019)

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Arash Boochani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, F., Boochani, A., Elahi, S.M. et al. Vanadium effect on the electronic and thermoelectric properties of ScPtBi compound. Int Nano Lett (2020).

Download citation


  • DFT
  • ScPtBi
  • V impurity
  • Electronic property
  • Thermoelectric properties