A review on phytosynthesis, affecting factors and characterization techniques of silver nanoparticles designed by green approach

Abstract

Nature has a massive range of diverse species of flora. The phytochemical content of each plant may vary due to the diverse climate and different geographical areas. Several plants have been outlined for their reducing properties and highly exploited for the green synthesis of metal nanoparticles. Moreover, phytochemicals present in plant parts (leaf, root, flower, fruit, etc.) act as both reducing and capping agents for the production of nanoparticles. Plant-mediated nanoparticles have gained so much attention in the present era for its green and rational approach and developed as a green substitute to conventional synthesis approaches. This critical review encloses literature, phytosynthesis methods, and factors affecting the synthesis of silver nanoparticles. Also, the main characterization techniques especially, spectroscopic techniques are epigrammatically summarized and discussed here.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Yonezawa, T.: Preparation of metal nanoparticles and their application for materials. Nanoparticle Technology Handbook, pp. 829–837. Elsevier, Amsterdam (2018). https://doi.org/10.1016/B978-0-444-64110-6.00085-8

    Google Scholar 

  2. 2.

    Odularu, A.T.: Metal nanoparticles: thermal decomposition, biomedicinal applications to cancer treatment, and future perspectives. Bioinorg. Chem. Appl. 9354708, 2018 (2018). https://doi.org/10.1155/2018/9354708

    Article  CAS  Google Scholar 

  3. 3.

    Aziz, M., Abbas, S.S., Baharom, W.R.W.: Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Mater. Lett. 91, 31–34 (2013). https://doi.org/10.1016/j.matlet.2012.09.079

    Article  CAS  Google Scholar 

  4. 4.

    Adam, R.E., Pozina, G., Willander, M., Nur, O.: Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photon. Nanostruct. Fundam. Appl. 32, 11–18 (2018). https://doi.org/10.1016/j.photonics.2018.08.005

    Article  Google Scholar 

  5. 5.

    Seku, K., Gangapuram, B.R., Pejjai, B., Kadimpati, K.K., Golla, N.: Microwave-assisted synthesis of silver nanoparticles and their application in catalytic, antibacterial and antioxidant activities. J. Nanostruct. Chem. 8(2), 179–188 (2018). https://doi.org/10.1007/s40097-018-0264-7

    Article  CAS  Google Scholar 

  6. 6.

    Mansoureh, G., Parisa, V.: Synthesis of metal nanoparticles using laser ablation technique. Emerging Applications of Nanoparticles and Architecture Nanostructures, pp. 575–596. Elsevier, Amsterdam (2018). https://doi.org/10.1016/B978-0-323-51254-1.00019-1

    Google Scholar 

  7. 7.

    Singaravelan, R., Alwar, S.B.S.: Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles. Appl. Nanosci. 5(8), 983–991 (2015). https://doi.org/10.1007/s13204-014-0396-0

    Article  CAS  Google Scholar 

  8. 8.

    Wani, I.A., Ganguly, A., Ahmed, J., Ahmad, T.: Silver nanoparticles: ultrasonic wave assisted synthesis, optical characterization and surface area studies. Mater. Lett. 65(3), 520–522 (2011). https://doi.org/10.1016/j.matlet.2010.11.003

    Article  CAS  Google Scholar 

  9. 9.

    Khan, A., Rashid, A., Younas, R., Chong, R.: A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett. 6(1), 21–26 (2016). https://doi.org/10.1007/s40089-015-0163-6

    Article  CAS  Google Scholar 

  10. 10.

    Velhal, S.G., Kulkarni, S.D., Latpate, R.V.: Fungal mediated silver nanoparticle synthesis using robust experimental design and its application in cotton fabric. Int. Nano Lett. 6(4), 257–264 (2016). https://doi.org/10.1007/s40089-016-0192-9

    Article  CAS  Google Scholar 

  11. 11.

    Rolim, W.R., Pelegrino, M.T., de Araújo Lima, B., Ferraz, L.S., Costa, F.N., Bernardes, J.S., Seabra, A.B., et al.: Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 463, 66–74 (2019). https://doi.org/10.1016/j.apsusc.2018.08.203

    Article  CAS  Google Scholar 

  12. 12.

    Azizian-Shermeh, O., Einali, A., Ghasemi, A.: Rapid biologically one-step synthesis of stable bioactive silver nanoparticles using Osage orange (Maclura pomifera) leaf extract and their antimicrobial activities. Adv. Powder Technol. 28(12), 3164–3171 (2017). https://doi.org/10.1016/j.apt.2017.10.001

    Article  CAS  Google Scholar 

  13. 13.

    Sana, S.S., Dogiparthi, L.K.: Green synthesis of silver nanoparticles using Givotia moluccana leaf extract and evaluation of their antimicrobial activity. Mater. Lett. 226, 47–51 (2018). https://doi.org/10.1016/j.matlet.2018.05.009

    Article  CAS  Google Scholar 

  14. 14.

    Salar, R.K., Sharma, P., Kumar, N.: Enhanced antibacterial activity of streptomycin against some human pathogens using green synthesized silver nanoparticles. Resour. Eff. Technol. 1(2), 106–115 (2015). https://doi.org/10.1016/j.reffit.2015.11.004

    Article  Google Scholar 

  15. 15.

    Velmurugan, P., Sivakumar, S., Young-Chae, S., Seong-Ho, J., Pyoung-In, Y., Jeong-Min, S., Sung-Chul, H.: Synthesis and characterization comparison of peanut shell extract silver nanoparticles with commercial silver nanoparticles and their antifungal activity. J. Ind. Eng. Chem. 31, 51–54 (2015). https://doi.org/10.1016/j.jiec.2015.06.031

    Article  CAS  Google Scholar 

  16. 16.

    Ghramh, H.A., Ibrahim, E.H., Kilany, M.: Study of anticancer, antimicrobial, immunomodulatory, and silver nanoparticles production by Sidr honey from three different sources. Food Sci. Nutr. 8(1), 445–455 (2020). https://doi.org/10.1002/fsn3.1328

    Article  CAS  Google Scholar 

  17. 17.

    Keast, V.J., Myles, T.A., Shahcheraghi, N., Cortie, M.B.: Corrosion processes of triangular silver nanoparticles compared to bulk silver. J. Nanopart. Res. 18(2), 45 (2016). https://doi.org/10.1007/s11051-016-3354-9

    Article  CAS  Google Scholar 

  18. 18.

    Elhakim, H.K., Azab, S.M., Fekry, A.M.: A novel simple biosensor containing silver nanoparticles/propolis (bee glue) for microRNA let-7a determination. Mater. Sci. Eng. C 92, 489–495 (2018). https://doi.org/10.1016/j.msec.2018.06.063

    Article  CAS  Google Scholar 

  19. 19.

    Singh, A., Dar, M.Y., Joshi, B., Sharma, B., Shrivastava, S., Shukla, S.: Phytofabrication of silver nanoparticles: novel drug to overcome hepatocellular ailments. Toxicol. Rep. 5, 333–342 (2018). https://doi.org/10.1016/j.toxrep.2018.02.013

    Article  CAS  Google Scholar 

  20. 20.

    Choudhary, M.K., Kataria, J., Sharma, S.: Evaluation of the kinetic and catalytic properties of biogenically synthesized silver nanoparticles. J. Clean. Prod. 198, 882–890 (2018). https://doi.org/10.1016/j.jclepro.2018.09.015

    Article  CAS  Google Scholar 

  21. 21.

    Edison, T.J.I., Sethuraman, M.G.: Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47(9), 1351–1357 (2012). https://doi.org/10.1016/j.procbio.2012.04.025

    Article  CAS  Google Scholar 

  22. 22.

    Khan, M.A., Khan, T., Nadhman, A.: Applications of plant terpenoids in the synthesis of colloidal silver nanoparticles. Adv. Coll. Interface. Sci. 234, 132–141 (2016). https://doi.org/10.1016/j.cis.2016.04.008

    Article  CAS  Google Scholar 

  23. 23.

    Elumalai, E.K., Kayalvizhi, K., Silvan, S.: Coconut water assisted green synthesis of silver nanoparticles. J. Pharm. Bioallied Sci. 6(4), 241 (2014). https://doi.org/10.4103/0975-7406.142953

    Article  CAS  Google Scholar 

  24. 24.

    Krutyakov, Y.A., Kudrinskiy, A.A., Zherebin, P.M., Lisichkin, G.V.: Correlation between the rate of silver nanoparticle oxidation and their biological activity: the role of the capping agent. J. Nanopart. Res. 21(4), 69 (2019). https://doi.org/10.1007/s11051-019-4495-4

    Article  CAS  Google Scholar 

  25. 25.

    Ahmed, R.H., Mustafa, D.E.: Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. Int. Nano Lett. (2019). https://doi.org/10.1007/s40089-019-00291-9

    Article  Google Scholar 

  26. 26.

    Jain, S., Mehata, M.S.: Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Sci. Rep. 7(1), 1–13 (2017). https://doi.org/10.1038/s41598-017-15724-8

    Article  CAS  Google Scholar 

  27. 27.

    Mukundan, D., Mohankumar, R., Vasanthakumari, R.: Comparative study of synthesized silver and gold nanoparticles using leaves extract of Bauhinia tomentosa Linn and their anticancer efficacy. Bull. Mater. Sci. 40(2), 335–344 (2017). https://doi.org/10.1007/s12034-017-1376-2

    Article  CAS  Google Scholar 

  28. 28.

    David, L., Moldovan, B.: Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10(2), 202 (2020). https://doi.org/10.3390/nano10020202

    Article  CAS  Google Scholar 

  29. 29.

    Moldovan, B., Sincari, V., Perde-Schrepler, M., David, L.: Biosynthesis of silver nanoparticles using Ligustrum ovalifolium fruits and their cytotoxic effects. Nanomaterials 8(8), 627 (2018). https://doi.org/10.3390/nano8080627

    Article  CAS  Google Scholar 

  30. 30.

    Ravichandran, V., Vasanthi, S., Shalini, S., Shah, S.A.A., Tripathy, M., Paliwal, N.: Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys. 15, 102565 (2019). https://doi.org/10.1016/j.rinp.2019.102565

    Article  Google Scholar 

  31. 31.

    Jasrotia, T., Chaudhary, S., Kaushik, A., Kumar, R., Chaudhary, G.R.: Green chemistry-assisted synthesis of biocompatible Ag, Cu, and Fe2O3 nanoparticles. Mater. Today Chem. 15, 100214 (2020). https://doi.org/10.1016/j.mtchem.2019.100214

    Article  CAS  Google Scholar 

  32. 32.

    Baruah, D., Yadav, R.N.S., Yadav, A., Das, A.M.: Alpinia nigra fruits mediated synthesis of silver nanoparticles and their antimicrobial and photocatalytic activities. J. Photochem. Photobiol. B 201, 111649 (2019). https://doi.org/10.1016/j.jphotobiol.2019.111649

    Article  CAS  Google Scholar 

  33. 33.

    Hasnain, M.S., Javed, M.N., Alam, M.S., Rishishwar, P., Rishishwar, S., Ali, S., Beg, S.: Purple heart plant leaves extract-mediated silver nanoparticle synthesis: optimization by Box–Behnken design. Mater. Sci. Eng. C 99, 1105–1114 (2019). https://doi.org/10.1016/j.msec.2019.02.061

    Article  CAS  Google Scholar 

  34. 34.

    Gulbagca, F., Ozdemir, S., Gulcan, M., Sen, F.: Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon 5(12), e02980 (2019). https://doi.org/10.1016/j.heliyon.2019.e02980

    Article  Google Scholar 

  35. 35.

    Jebril, S., Dridi, C.: Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: in vitro and in vivo. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122898

    Article  Google Scholar 

  36. 36.

    Şahin, B., Demir, E., Aygün, A., Gündüz, H., Şen, F.: Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J. Biotechnol. 260, 79–83 (2017). https://doi.org/10.1016/j.mset.2020.02.008

    Article  Google Scholar 

  37. 37.

    Jayaprakash, N., Vijaya, J.J., Kaviyarasu, K., Kombaiah, K., Kennedy, L.J., Ramalingam, R.J., Munuswamy, M.A., Al-Lohedan, H.A.: Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. J. Photochem. Photobiol. B 169, 178–185 (2017). https://doi.org/10.1016/j.jphotobiol.2017.03.013

    Article  CAS  Google Scholar 

  38. 38.

    Logaranjan, K., Raiza, A.J., Gopinath, S.C., Chen, Y., Pandian, K.: Shape-and size-controlled synthesis of silver nanoparticles using aloe vera plant extract and their antimicrobial activity. Nanoscale Res. Lett. 11(1), 1–9 (2016). https://doi.org/10.1186/s11671-016-1725-x

    Article  CAS  Google Scholar 

  39. 39.

    Verma, D.K., Hasan, S.H., Banik, R.M.: Photo-catalyzed and phyto-mediated rapid green synthesis of silver nanoparticles using herbal extract of Salvinia molesta and its antimicrobial efficacy. J. Photochem. Photobiol. B 155, 51–59 (2016). https://doi.org/10.1016/j.jphotobiol.2015.12.008

    Article  CAS  Google Scholar 

  40. 40.

    Sinsinwar, S., Sarkar, M.K., Suriya, K.R., Nithyanand, P., Vadivel, V.: Use of agricultural waste (coconut shell) for the synthesis of silver nanoparticles and evaluation of their antibacterial activity against selected human pathogens. Microb. Pathog. 124, 30–37 (2018). https://doi.org/10.1016/j.micpath.2018.08.025

    Article  CAS  Google Scholar 

  41. 41.

    Srinithya, B., Kumar, V.V., Vadivel, V., Pemaiah, B., Anthony, S.P., Muthuraman, M.S.: Synthesis of biofunctionalized AgNPs using medicinally important Sida cordifolia leaf extract for enhanced antioxidant and anticancer activities. Mater. Lett. 170, 101–104 (2016). https://doi.org/10.1016/j.matlet.2016.02.019

    Article  CAS  Google Scholar 

  42. 42.

    Velmurugan, P., Cho, M., Lim, S.S., Seo, S.K., Myung, H., Bang, K.S., Oh, B.T.: Phytosynthesis of silver nanoparticles by Prunus yedoensis leaf extract and their antimicrobial activity. Mater. Lett. 138, 272–275 (2015). https://doi.org/10.1016/j.matlet.2014.09.136

    Article  CAS  Google Scholar 

  43. 43.

    Francis, S., Koshy, E.P., Mathew, B.: Microwave assisted green synthesis and characterizations of noble metal nanoparticles and their roles as catalysts in organic reduction reactions and anticancer agent. Mater. Res. Express 5(4), 045032 (2018). https://doi.org/10.1088/2053-1591/aaba0c

    Article  CAS  Google Scholar 

  44. 44.

    Benakashani, F., Allafchian, A.R., Jalali, S.A.H.: Biosynthesis of silver nanoparticles using Capparis spinosa L. leaf extract and their antibacterial activity. Karbala Int. J. Mod. Sci. 2(4), 251–258 (2016). https://doi.org/10.1016/j.kijoms.2016.08.004

    Article  Google Scholar 

  45. 45.

    Ramesh, P.S., Kokila, T., Geetha, D.: Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 142, 339–343 (2015). https://doi.org/10.1016/j.saa.2015.01.062

    Article  CAS  Google Scholar 

  46. 46.

    Kumar, V.A., Ammani, K., Jobina, R., Subhaswaraj, P., Siddhardha, B.: Photo-induced and phytomediated synthesis of silver nanoparticles using Derris trifoliata leaf extract and its larvicidal activity against Aedes aegypti. J. Photochem. Photobiol. B 171, 1–8 (2017). https://doi.org/10.1016/j.jphotobiol.2017.04.022

    Article  CAS  Google Scholar 

  47. 47.

    Moodley, J.S., Krishna, S.B.N., Pillay, K., Govender, P.: Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Adv. Nat. Sci. Nanosci. Nanotechnol. 9(1), 015011 (2018). https://doi.org/10.1088/2043-6254/aaabb2

    Article  CAS  Google Scholar 

  48. 48.

    Periyasamy, Y., Baskaran, B., Senniappan, V., Chidambaram, S.: Green synthesis and characterization of silver nanomaterials using leaf extract of Prosopis cineraria for antibacterial and anti-cancer applications. Mater. Res. Express 5(10), 105402 (2018). https://doi.org/10.1088/2053-1591/aadb4f

    Article  CAS  Google Scholar 

  49. 49.

    Balavijayalakshmi, J., Ramalakshmi, V.: Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. J. Appl. Res. Technol. 15(5), 413–422 (2017). https://doi.org/10.1016/j.jart.2017.03.010

    Article  Google Scholar 

  50. 50.

    Azarbani, F., Shiravand, S.: Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, antifungal and toxic effects. Green Chem. Lett. Rev. 13(1), 41–49 (2020). https://doi.org/10.1080/17518253.2020.1726504

    Article  CAS  Google Scholar 

  51. 51.

    Veisi, H., Azizi, S., Mohammadi, P.: Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J. Clean. Prod. 170, 1536–1543 (2018). https://doi.org/10.1016/j.jclepro.2017.09.265

    Article  CAS  Google Scholar 

  52. 52.

    Kolya, H., Maiti, P., Pandey, A., Tripathy, T.: Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using Amaranthus gangeticus Linn leaf extract. J. Anal. Sci. Technol. 6(1), 33 (2015). https://doi.org/10.1186/s40543-015-0074-1

    Article  CAS  Google Scholar 

  53. 53.

    Behravan, M., Panahi, A.H., Naghizadeh, A., Ziaee, M., Mahdavi, R., Mirzapour, A.: Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int. J. Biol. Macromol. 124, 148–154 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.101

    Article  CAS  Google Scholar 

  54. 54.

    Hamedi, S., Shojaosadati, S.A.: Rapid and green synthesis of silver nanoparticles using Diospyros lotus extract: evaluation of their biological and catalytic activities. Polyhedron 171, 172–180 (2019). https://doi.org/10.1016/j.poly.2019.07.010

    Article  CAS  Google Scholar 

  55. 55.

    Padalia, H., Moteriya, P., Chanda, S.: Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 8(5), 732–774 (2015). https://doi.org/10.1016/j.arabjc.2014.11.015

    Article  CAS  Google Scholar 

  56. 56.

    Karthik, R., Hou, Y.S., Chen, S.M., Elangovan, A., Ganesan, M., Muthukrishnan, P.: Eco-friendly synthesis of Ag-NPs using Cerasus serrulata plant extract–Its catalytic, electrochemical reduction of 4-NPh and antibacterial activity. J. Ind. Eng. Chem. 37, 330–339 (2016). https://doi.org/10.1016/j.jiec.2016.03.044

    Article  CAS  Google Scholar 

  57. 57.

    Khaled, J.M., Alharbi, N.S., Kadaikunnan, S., Alobaidi, A.S., Al-Anbr, M.N., Gopinath, K., Benelli, G., et al.: Green synthesis of Ag nanoparticles with anti-bacterial activity using the leaf extract of an African medicinal plant, Ipomoea asarifolia (Convolvulaceae). J. Cluster Sci. 28(5), 3009–3019 (2017). https://doi.org/10.1007/s10876-017-1271-4

    Article  CAS  Google Scholar 

  58. 58.

    Katta, V.K.M., Dubey, R.S.: Green synthesis of silver nanoparticles using Tagetes erecta plant and investigation of their structural, optical, chemical and morphological properties. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.809

    Article  Google Scholar 

  59. 59.

    Rajeshkumar, S.: Synthesis of silver nanoparticles using fresh bark of Pongamia pinnata and characterization of its antibacterial activity against gram positive and gram negative pathogens. Resour. Eff. Technol. 2(1), 30–35 (2016). https://doi.org/10.1016/j.reffit.2016.06.003

    Article  Google Scholar 

  60. 60.

    Dadashpour, M., Firouzi-Amandi, A., Pourhassan-Moghaddam, M., Maleki, M.J., Soozangar, N., Jeddi, F., Pilehvar-Soltanahmadi, Y.: Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Mater. Sci. Eng. C 92, 902–912 (2018). https://doi.org/10.1016/j.msec.2018.07.053

    Article  CAS  Google Scholar 

  61. 61.

    Sadeghi, B., Gholamhoseinpoor, F.: A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 134, 310–315 (2015). https://doi.org/10.1016/j.saa.2014.06.046

    Article  CAS  Google Scholar 

  62. 62.

    Dehghanizade, S., Arasteh, J., Mirzaie, A.: Green synthesis of silver nanoparticles using Anthemis atropatana extract: characterization and in vitro biological activities. Artif. Cells Nanomed. Biotechnol. 46(1), 160–168 (2018). https://doi.org/10.1080/21691401.2017.1304402

    Article  CAS  Google Scholar 

  63. 63.

    Vijayan, R., Joseph, S., Mathew, B.: Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artif. Cells Nanomed. Biotechnol. 46(4), 861–871 (2018). https://doi.org/10.1080/21691401.2017.1345930

    Article  CAS  Google Scholar 

  64. 64.

    MeenaKumari, M., Philip, D.: Degradation of environment pollutant dyes using phytosynthesized metal nanocatalysts. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 135, 632–638 (2015). https://doi.org/10.1016/j.saa.2014.07.037

    Article  CAS  Google Scholar 

  65. 65.

    Al-Shmgani, H.S., Mohammed, W.H., Sulaiman, G.M., Saadoon, A.H.: Biosynthesis of silver nanoparticles from Catharanthus roseus leaf extract and assessing their antioxidant, antimicrobial, and wound-healing activities. Artif. Cells Nanomed. Biotechnol. 45(6), 1234–1240 (2016). https://doi.org/10.1080/21691401.2016.1220950

    Article  CAS  Google Scholar 

  66. 66.

    Ahmed, Q., Gupta, N., Kumar, A., Nimesh, S.: Antibacterial efficacy of silver nanoparticles synthesized employing Terminalia arjuna bark extract. Artif. Cells Nanomed. Biotechnol. 45(6), 1192–1200 (2017). https://doi.org/10.1080/21691401.2016.1215328

    Article  CAS  Google Scholar 

  67. 67.

    Dong, C., Cao, C., Zhang, X., Zhan, Y., Wang, X., Yang, X., Yuan, B.: Wolfberry fruit (Lycium barbarum) extract mediated novel route for the green synthesis of silver nanoparticles. Optik 130, 162–170 (2017). https://doi.org/10.1016/j.ijleo.2016.11.010

    Article  CAS  Google Scholar 

  68. 68.

    Bhuvaneswari, R., Xavier, R.J., Arumugam, M.: Facile synthesis of multifunctional silver nanoparticles using mangrove plant Excoecaria agallocha L. for its antibacterial, antioxidant and cytotoxic effects. J. Parasit. Dis. 41(1), 180–187 (2017). https://doi.org/10.1007/s12639-016-0773-6

    Article  CAS  Google Scholar 

  69. 69.

    Rajakumar, G., Gomathi, T., Thiruvengadam, M., Rajeswari, V.D., Kalpana, V.N., Chung, I.M.: Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract. Microb. Pathog. 103, 123–128 (2017). https://doi.org/10.1016/j.micpath.2016.12.019

    Article  CAS  Google Scholar 

  70. 70.

    Saravanakumar, A., Peng, M.M., Ganesh, M., Jayaprakash, J., Mohankumar, M., Jang, H.T.: Low-cost and eco-friendly green synthesis of silver nanoparticles using Prunus japonica (Rosaceae) leaf extract and their antibacterial, antioxidant properties. Artif. Cells Nanomed. Biotechnol. 45(6), 1165–1171 (2017). https://doi.org/10.1080/21691401.2016.1203795

    Article  CAS  Google Scholar 

  71. 71.

    Hamelian, M., Zangeneh, M.M., Shahmohammadi, A., Varmira, K., Veisi, H.: Pistacia atlantica leaf extract mediated synthesis of silver nanoparticles and their antioxidant, cytotoxicity, and antibacterial effects under in vitro condition. Appl. Organomet. Chem. 34(1), e5278 (2020). https://doi.org/10.1002/aoc.5278

    Article  CAS  Google Scholar 

  72. 72.

    Parveen, M., Ahmad, F., Malla, A.M., Azaz, S.: Microwave-assisted green synthesis of silver nanoparticles from Fraxinus excelsior leaf extract and its antioxidant assay. Appl. Nanosci. 6(2), 267–276 (2016). https://doi.org/10.1007/s13204-015-0433-7

    Article  CAS  Google Scholar 

  73. 73.

    Fatimah, I., Aftrid, Z.H.V.I.: Characteristics and antibacterial activity of green synthesized silver nanoparticles using red spinach (Amaranthus tricolor L.) leaf extract. Green Chem. Lett. Rev. 12(1), 25–30 (2019). https://doi.org/10.1080/17518253.2019.1569729

    Article  CAS  Google Scholar 

  74. 74.

    Edison, T.N.J.I., Lee, Y.R., Sethuraman, M.G.: Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 161, 122–129 (2016). https://doi.org/10.1016/j.saa.2016.02.044

    Article  CAS  Google Scholar 

  75. 75.

    Shaik, M.R., Khan, M., Kuniyil, M., Al-Warthan, A., Alkhathlan, H.Z., Siddiqui, M.R.H., Adil, S.F.: Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability 10(4), 913 (2018). https://doi.org/10.3390/su10040913

    Article  CAS  Google Scholar 

  76. 76.

    Rao, B., Tang, R.C.: Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv. Nat. Sci. Nanosci. Nanotechnol. 8(1), 015014 (2017). https://doi.org/10.1088/2043-6254/aa5983

    Article  CAS  Google Scholar 

  77. 77.

    Carmona, E.R., Benito, N., Plaza, T., Recio-Sánchez, G.: Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chem. Lett. Rev. 10(4), 250–256 (2017). https://doi.org/10.1080/17518253.2017.1360400

    Article  CAS  Google Scholar 

  78. 78.

    Otari, S.V., Patil, R.M., Ghosh, S.J., Pawar, S.H.: Green phytosynthesis of silver nanoparticles using aqueous extract of Manilkara zapota (L.) seeds and its inhibitory action against Candida species. Mater. Lett. 116, 367–369 (2014). https://doi.org/10.1016/j.matlet.2013.11.066

    Article  CAS  Google Scholar 

  79. 79.

    Kokila, T., Ramesh, P.S., Geetha, D.: Biosynthesis of AgNPs using Carica Papaya peel extract and evaluation of its antioxidant and antimicrobial activities. Ecotoxicol. Environ. Saf. 134, 467–473 (2016). https://doi.org/10.1016/j.ecoenv.2016.03.021

    Article  CAS  Google Scholar 

  80. 80.

    Nayak, S., Bhat, M.P., Udayashankar, A.C., Lakshmeesha, T.R., Geetha, N., Jogaiah, S.: Biosynthesis and characterization of Dillenia indica-mediated silver nanoparticles and their biological activity. Appl. Organomet. Chem. (2020). https://doi.org/10.1002/aoc.5567

    Article  Google Scholar 

  81. 81.

    Kumar, B., Angulo, Y., Smita, K., Cumbal, L., Debut, A.: Capuli cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light. Particuology 24, 123–128 (2016). https://doi.org/10.1016/j.partic.2015.05.005

    Article  CAS  Google Scholar 

  82. 82.

    Fatimah, I.: Green synthesis of silver nanoparticles using extract of Parkia speciosa Hassk pods assisted by microwave irradiation. J. Adv. Res. 7(6), 961–969 (2016). https://doi.org/10.1016/j.jare.2016.10.002

    Article  CAS  Google Scholar 

  83. 83.

    Huo, Y., Singh, P., Kim, Y.J., Soshnikova, V., Kang, J., Markus, J., Ahn, S., Castro-Aceituno, V., Mathiyalagan, R., Chokkalingam, M., Bae, K.S., Yang, D.C.: Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and in vitro applications. Artif. Cells Nanomed. Biotechnol. 46(2), 303–312 (2018). https://doi.org/10.1080/21691401.2017.1307213

    Article  CAS  Google Scholar 

  84. 84.

    Allafchian, A.R., Mirahmadi-Zare, S.Z., Jalali, S.A.H., Hashemi, S.S., Vahabi, M.R.: Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J. Nanostruct. Chem. 6(2), 129–135 (2016). https://doi.org/10.1007/s40097-016-0187-0

    Article  CAS  Google Scholar 

  85. 85.

    Pirtarighat, S., Ghannadnia, M., Baghshahi, S.: Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostruct. Chem. 9(1), 1–9 (2019). https://doi.org/10.1007/s40097-018-0291-4

    Article  CAS  Google Scholar 

  86. 86.

    Rautela, A., Rani, J., Das, M.D.: Green synthesis of silver nanoparticles from Tectona grandis seeds extract: characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol. 10(1), 1–10 (2019). https://doi.org/10.1186/s40543-018-0163-z

    Article  Google Scholar 

  87. 87.

    Rafique, M., Sadaf, I., Tahir, M.B., Rafique, M.S., Nabi, G., Iqbal, T., Sughra, K.: Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater. Sci. Eng. C 99, 1313–1324 (2019). https://doi.org/10.1016/j.msec.2019.02.059

    Article  CAS  Google Scholar 

  88. 88.

    Karthiga, P.: Preparation of silver nanoparticles by Garcinia mangostana stem extract and investigation of the antimicrobial properties. Biotechnol. Res. Innov. 2(1), 30–36 (2018). https://doi.org/10.1016/j.biori.2017.11.001

    Article  Google Scholar 

  89. 89.

    Sriranjani, R., Srinithya, B., Vellingiri, V., Brindha, P., Anthony, S.P., Sivasubramanian, A., Muthuraman, M.S.: Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J. Mol. Liq. 220, 926–930 (2016). https://doi.org/10.1016/j.molliq.2016.05.042

    Article  CAS  Google Scholar 

  90. 90.

    Asimuddin, M., Shaik, M.R., Fathima, N., Afreen, M.S., Adil, S.F., Siddiqui, R.H., Khan, M.: Study of antibacterial properties of Ziziphus mauritiana based green synthesized silver nanoparticles against various bacterial strains. Sustainability 12(4), 1484 (2020). https://doi.org/10.3390/su12041484

    Article  CAS  Google Scholar 

  91. 91.

    Sudha, A., Jeyakanthan, J., Srinivasan, P.: Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resour. Eff. Technol. 3(4), 506–515 (2017). https://doi.org/10.1016/j.reffit.2017.07.002

    Article  Google Scholar 

  92. 92.

    Doan, V.D., Nguyen, T.D., Nguyen, T.L.H., Nguyen, H.T.: Green synthesis of silver nanoparticles using Aganonerion polymorphum leaves extract and evaluation of their antibacterial and catalytic activity. Mater. Res. Express 6(11), 1150g1 (1150g). https://doi.org/10.1088/2053-1591/ab5128

    Article  Google Scholar 

  93. 93.

    Bharathi, D., Vasantharaj, S., Bhuvaneshwari, V.: Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial, anti-biofilm and photo catalytic activity. Mater. Res. Express 5(5), 055404 (2018). https://doi.org/10.1088/2053-1591/aac2ef

    Article  CAS  Google Scholar 

  94. 94.

    Francis, S., Joseph, S., Koshy, E.P., Mathew, B.: Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. Artif. Cells Nanomed. Biotechnol. 46(4), 795–804 (2018). https://doi.org/10.1080/21691401.2017.1345921

    Article  CAS  Google Scholar 

  95. 95.

    Mathew, S., Prakash, A., Radhakrishnan, E.K.: Sunlight mediated rapid synthesis of small size range silver nanoparticles using Zingiber officinale rhizome extract and its antibacterial activity analysis. Inorg. Nano Met. Chem. 48(2), 139–145 (2018). https://doi.org/10.1080/24701556.2017.1373295

    Article  CAS  Google Scholar 

  96. 96.

    Alshehri, M.A., Alanazi, N.A., Panneerselvam, C., Trivedi, S., Maggi, F., Sut, S., Dall'Acqua, S.: Phytochemical analysis of Rhazya stricta extract and its use in fabrication of silver nanoparticles effective against mosquito vectors and microbial pathogens. Sci. Total Environ. 700, 134443 (2020). https://doi.org/10.1016/j.scitotenv.2019.134443

    Article  CAS  Google Scholar 

  97. 97.

    Singh, C., Kumar, J., Kumar, P., Chauhan, B.S., Tiwari, K.N., Mishra, S.K., Singh, J., et al.: Green synthesis of silver nanoparticles using aqueous leaf extract of Premna integrifolia (L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity. Biotechnol. Biotechnol. Equip. 33(1), 359–371 (2019). https://doi.org/10.1080/13102818.2019.1577699

    Article  CAS  Google Scholar 

  98. 98.

    Saidu, F.K., Mathew, A., Parveen, A., Valiyathra, V., Thomas, G.V.: Novel green synthesis of silver nanoparticles using clammy cherry (Cordia obliqua Willd) fruit extract and investigation on its catalytic and antimicrobial properties. SN Appl. Sci. 1(11), 1368 (2019). https://doi.org/10.1007/s42452-019-1302-x

    Article  CAS  Google Scholar 

  99. 99.

    Anjana, V.N., Koshy, E.P., Mathew, B.: Facile synthesis of silver nanoparticles using Azolla caroliniana, their cytotoxicity, catalytic, optical and antibacterial activity. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2019.12.250

    Article  Google Scholar 

  100. 100.

    Taghavizadeh Yazdi, M.E., Hamidi, A., Amiri, M.S., Kazemi Oskuee, R., Hosseini, H.A., Hashemzadeh, A., Darroudi, M.: Eco-friendly and plant-based synthesis of silver nanoparticles using Allium giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Mater. Technol. 34(8), 490–497 (2019). https://doi.org/10.1080/10667857.2019.1583408

    Article  CAS  Google Scholar 

  101. 101.

    Lai, X., Guo, R., Xiao, H., Lan, J., Jiang, S., Cui, C., Ren, E.: Rapid microwave-assisted bio-synthesized silver/Dandelion catalyst with superior catalytic performance for dyes degradation. J. Hazard. Mater. 371, 506–512 (2019). https://doi.org/10.1016/j.jhazmat.2019.03.039

    Article  CAS  Google Scholar 

  102. 102.

    Kamaraj, M., Nithya, T.G., Santhosh, P., Mulugeta, K.: Rapid green synthesis of silver nanoparticles using Ethiopian Cactus pear fruit peel infusions and evaluation of its in vitro clinical potentials. J. Inorg. Organomet. Polym Mater. (2020). https://doi.org/10.1007/s10904-020-01549-y

    Article  Google Scholar 

  103. 103.

    Jaffri, S.B., Ahmad, K.S.: Augmented photocatalytic, antibacterial and antifungal activity of prunosynthetic silver nanoparticles. Artif. Cells Nanomed. Biotechnol. 46(sup1), 127–137 (2018). https://doi.org/10.1080/21691401.2017.1414826

    Article  CAS  Google Scholar 

  104. 104.

    Cyril, N., George, J.B., Nair, P.V., Joseph, L., Sunila, C.T., Smitha, V.K., Sylas, V.P., et al.: Catalytic activity of Derris trifoliata stabilized gold and silver nanoparticles in the reduction of isomers of nitrophenol and azo violet. Nano Struct. Nano Objects 22, 100430 (2020). https://doi.org/10.1016/j.nanoso.2020.100430

    Article  CAS  Google Scholar 

  105. 105.

    Muthu, K., Priya, S.: Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 179, 66–72 (2017). https://doi.org/10.1016/j.saa.2017.02.024

    Article  CAS  Google Scholar 

  106. 106.

    Francis, S., Joseph, S., Koshy, E.P., Mathew, B.: Synthesis and characterization of multifunctional gold and silver nanoparticles using leaf extract of Naregamia alata and their applications in the catalysis and control of mastitis. New J. Chem. 41(23), 14288–14298 (2017). https://doi.org/10.1039/C7NJ02453C

    Article  CAS  Google Scholar 

  107. 107.

    Ghramh, H.A., Al-Ghamdi, K.M., Mahyoub, J.A., Ibrahim, E.H.: Chrysanthemum extract and extract prepared silver nanoparticles as biocides to control Aedes aegypti (L.), the vector of dengue fever. J. Asia Pac. Entomol. 21(1), 205–210 (2018). https://doi.org/10.1016/j.aspen.2017.12.001

    Article  Google Scholar 

  108. 108.

    Ramanathan, S., Gopinath, S.C., Anbu, P., Lakshmipriya, T., Kasim, F.H., Lee, C.G.: Eco-friendly synthesis of Solanum trilobatum extract-capped silver nanoparticles is compatible with good antimicrobial activities. J. Mol. Struct. 1160, 80–91 (2018). https://doi.org/10.1016/j.molstruc.2018.01.056

    Article  CAS  Google Scholar 

  109. 109.

    Jenifer, A.A., Malaikozhundan, B., Vijayakumar, S., Anjugam, M., Iswarya, A., Vaseeharan, B.: Green synthesis and characterization of silver nanoparticles (AgNPs) using leaf extract of Solanum nigrum and assessment of toxicity in vertebrate and invertebrate aquatic animals. J. Clust. Sci. (2019). https://doi.org/10.1007/s10876-019-01704-7

    Article  Google Scholar 

  110. 110.

    Kumar, D., Kumar, G., Agrawal, V.: Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall. bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol. Res. 117(2), 377–389 (2018). https://doi.org/10.1007/s00436-017-5711-8

    Article  Google Scholar 

  111. 111.

    Qing, W., Chen, K., Wang, Y., Liu, X., Lu, M.: Green synthesis of silver nanoparticles by waste tea extract and degradation of organic dye in the absence and presence of H2O2. Appl. Surf. Sci. 423, 1019–1024 (2017). https://doi.org/10.1016/j.apsusc.2017.07.007

    Article  CAS  Google Scholar 

  112. 112.

    Swargiary, M., Mitra, A., Halder, D., Kumar, S.: Fruit extract capped colloidal silver nanoparticles and their application in reduction of methylene blue dye. Biocatal. Biotransform. 37(3), 183–189 (2019). https://doi.org/10.1080/10242422.2018.1508283

    Article  CAS  Google Scholar 

  113. 113.

    Roy, K., Sarkar, C.K., Ghosh, C.K.: Plant-mediated synthesis of silver nanoparticles using parsley (Petroselinum crispum) leaf extract: spectral analysis of the particles and antibacterial study. Appl. Nanosci. 5(8), 945–951 (2015). https://doi.org/10.1007/s13204-014-0393-3

    Article  CAS  Google Scholar 

  114. 114.

    Swamy, M.K., Sudipta, K.M., Jayanta, K., Balasubramanya, S.: The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl. Nanosci. 5(1), 73–81 (2015). https://doi.org/10.1007/s13204-014-0293-6

    Article  CAS  Google Scholar 

  115. 115.

    Bonde, S.R., Rathod, D.P., Ingle, A.P., Ade, R.B., Gade, A.K., Rai, M.K.: Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanosci. Methods 1(1), 25–36 (2012). https://doi.org/10.1080/17458080.2010.529172

    Article  CAS  Google Scholar 

  116. 116.

    Yallappa, S., Manjanna, J., Peethambar, S.K., Rajeshwara, A.N., Satyanarayan, N.D.: Green synthesis of silver nanoparticles using Acacia farnesiana (Sweet Acacia) seed extract under microwave irradiation and their biological assessment. J. Clust. Sci. 24(4), 1081–1092 (2013). https://doi.org/10.1007/s10876-013-0599-7

    Article  CAS  Google Scholar 

  117. 117.

    Ahmad, N., Sharma, S., Alam, M.K., Singh, V.N., Shamsi, S.F., Mehta, B.R., Fatma, A.: Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf. B 81(1), 81–86 (2010). https://doi.org/10.1016/j.colsurfb.2010.06.029

    Article  CAS  Google Scholar 

  118. 118.

    Raghunandan, D., Mahesh, B.D., Basavaraja, S., Balaji, S.D., Manjunath, S.Y., Venkataraman, A.: Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract. J. Nanopart. Res. 13(5), 2021–2028 (2011). https://doi.org/10.1007/s11051-010-9956-8

    Article  CAS  Google Scholar 

  119. 119.

    Gopinath, K., Gowri, S., Arumugam, A.: Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J. Nanostruct. Chem. 3(1), 68 (2013). https://doi.org/10.1186/2193-8865-3-68

    Article  Google Scholar 

  120. 120.

    Saxena, A., Tripathi, R.M., Zafar, F., Singh, P.: Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett. 67(1), 91–94 (2012). https://doi.org/10.1016/j.matlet.2011.09.038

    Article  CAS  Google Scholar 

  121. 121.

    Saware, K., Venkataraman, A.: Biosynthesis and characterization of stable silver nanoparticles using Ficus religiosa leaf extract: a mechanism perspective. J. Clust. Sci. 25(4), 1157–1171 (2014). https://doi.org/10.1007/s10876-014-0697-1

    Article  CAS  Google Scholar 

  122. 122.

    Borase, H.P., Patil, C.D., Suryawanshi, R.K., Patil, S.V.: Ficus carica latex-mediated synthesis of silver nanoparticles and its application as a chemophotoprotective agent. Appl. Biochem. Biotechnol. 171(3), 676–688 (2013). https://doi.org/10.1007/s12010-013-0385-x

    Article  CAS  Google Scholar 

  123. 123.

    Raja, K., Saravanakumar, A., Vijayakumar, R.: Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 97, 490–494 (2012). https://doi.org/10.1016/j.saa.2012.06.038

    Article  CAS  Google Scholar 

  124. 124.

    Gopinath, V., MubarakAli, D., Priyadarshini, S., Priyadharsshini, N.M., Thajuddin, N., Velusamy, P.: Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf. B 96, 69–74 (2012). https://doi.org/10.1016/j.colsurfb.2012.03.023

    Article  CAS  Google Scholar 

  125. 125.

    Karuppiah, M., Rajmohan, R.: Green synthesis of silver nanoparticles using Ixora coccinea leaves extract. Mater. Lett. 97, 141–143 (2013). https://doi.org/10.1016/j.matlet.2013.01.087

    Article  CAS  Google Scholar 

  126. 126.

    Nazeruddin, G.M., Prasad, N.R., Prasad, S.R., Shaikh, Y.I., Waghmare, S.R., Adhyapak, P.: Coriandrum sativum seed extract assisted in situ green synthesis of silver nanoparticle and its anti-microbial activity. Ind. Crops Prod. 60, 212–216 (2014). https://doi.org/10.1016/j.indcrop.2014.05.040

    Article  CAS  Google Scholar 

  127. 127.

    Kouvaris, P., Delimitis, A., Zaspalis, V., Papadopoulos, D., Tsipas, S.A., Michailidis, N.: Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater. Lett. 76, 18–20 (2012). https://doi.org/10.1016/j.matlet.2012.02.025

    Article  CAS  Google Scholar 

  128. 128.

    Edison, T.J.I., Sethuraman, M.G.: Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 262–264 (2013). https://doi.org/10.1016/j.saa.2012.11.084

    Article  CAS  Google Scholar 

  129. 129.

    Raman, N., Sudharsan, S., Veerakumar, V., Pravin, N., Vithiya, K.: Pithecellobium dulce mediated extra-cellular green synthesis of larvicidal silver nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 96, 1031–1037 (2012). https://doi.org/10.1016/j.saa.2012.08.011

    Article  CAS  Google Scholar 

  130. 130.

    Rastogi, L., Arunachalam, J.: Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. Mater. Chem. Phys. 129(1–2), 558–563 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.068

    Article  CAS  Google Scholar 

  131. 131.

    Sinha, S.N., Paul, D.: Phytosynthesis of silver nanoparticles using Andrographis paniculata leaf extract and evaluation of their antibacterial activities. Spectrosc. Lett. 48(8), 600–604 (2015). https://doi.org/10.1080/00387010.2014.938756

    Article  CAS  Google Scholar 

  132. 132.

    Zarchi, A.K., Mokhtari, N., Arfan, M., Rehman, T., Ali, M., Amini, M., Majidi, R.F., Shahverdi, A.R.: A sunlight-induced method for rapid biosynthesis of silver nanoparticles using an Andrachnea chordifolia ethanol extract. Appl. Phys. A 103(2), 349–353 (2011). https://doi.org/10.1007/s00339-011-6259-6

    Article  CAS  Google Scholar 

  133. 133.

    Das, J., Das, M.P., Velusamy, P.: Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 104, 265–270 (2013). https://doi.org/10.1016/j.saa.2012.11.075

    Article  CAS  Google Scholar 

  134. 134.

    Dwivedi, A.D., Gopal, K.: Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A 369(1–3), 27–33 (2010). https://doi.org/10.1016/j.colsurfa.2010.07.020

    Article  CAS  Google Scholar 

  135. 135.

    Shameli, K., Ahmad, M.B., Zamanian, A., Sangpour, P., Shabanzadeh, P., Abdollahi, Y., Zargar, M.: Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomed. 7, 5603 (2012). https://doi.org/10.2147/IJN.S36786

    Article  CAS  Google Scholar 

  136. 136.

    Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K., Upadhyay, S.N.: Green synthesis of silver nanoparticles: a review. Green Sustain. Chem. 6(01), 34 (2016). https://doi.org/10.4236/gsc.2016.61004

    Article  CAS  Google Scholar 

  137. 137.

    Koduru, J.R., Kailasa, S.K., Bhamore, J.R., Kim, K.H., Dutta, T., Vellingiri, K.: Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review. Adv. Coll. Interface. Sci. 256, 326–339 (2018). https://doi.org/10.1016/j.cis.2018.03.001

    Article  CAS  Google Scholar 

  138. 138.

    Sharma, P., Pant, S., Rai, S., Yadav, R.B., Sharma, S., Dave, V.: Green synthesis and characterization of silver nanoparticles by Allium cepa L. to produce silver nano-coated fabric and their antimicrobial evaluation. Appl. Organomet. Chem. 32(3), e4146 (2018). https://doi.org/10.1002/aoc.4146

    Article  CAS  Google Scholar 

  139. 139.

    Odeniyi, M.A., Okumah, V.C., Adebayo-Tayo, B.C., Odeniyi, O.A.: Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustain Chem Pharm 15, 100197 (2020). https://doi.org/10.1016/j.scp.2019.100197

    Article  Google Scholar 

  140. 140.

    Sundeep, D., Kumar, T.V., Rao, P.S., Ravikumar, R.V.S.S.N., Krishna, A.G.: Green synthesis and characterization of Ag nanoparticles from Mangifera indica leaves for dental restoration and antibacterial applications. Prog. Biomater. 6(1–2), 57–66 (2017). https://doi.org/10.1007/s40204-017-0067-9

    Article  CAS  Google Scholar 

  141. 141.

    Bonnia, N.N., Kamaruddin, M.S., Nawawi, M.H., Ratim, S., Azlina, H.N., Ali, E.S.: Green biosynthesis of silver nanoparticles using ‘Polygonum Hydropiper’and study its catalytic degradation of methylene blue. Procedia Chem. 19, 594–602 (2016). https://doi.org/10.1016/j.proche.2016.03.058

    Article  CAS  Google Scholar 

  142. 142.

    Eustis, S., El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35(3), 209–217 (2006). https://doi.org/10.1002/chin.200625211

    Article  CAS  Google Scholar 

  143. 143.

    Moteriya, P., Chanda, S.: Synthesis and characterization of silver nanoparticles using Caesalpinia pulcherrima flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. Artif. Cells Nanomed. Biotechnol. 45(8), 1556–1567 (2017). https://doi.org/10.1080/21691401.2016.1261871

    Article  CAS  Google Scholar 

  144. 144.

    Parmar, A., Kaur, G., Kapil, S., Sharma, V., Choudhary, M.K., Sharma, S.: Novel biogenic silver nanoparticles as invigorated catalytic and antibacterial tool: a cleaner approach towards environmental remediation and combating bacterial invasion. Mater. Chem. Phys. 238, 121861 (2019). https://doi.org/10.1016/j.matchemphys.2019.121861

    Article  CAS  Google Scholar 

  145. 145.

    Mortazavi-Derazkola, S., Ebrahimzadeh, M.A., Amiri, O., Goli, H.R., Rafiei, A., Kardan, M., Salavati-Niasari, M.: Facile green synthesis and characterization of Crataegus microphylla extract-capped silver nanoparticles (CME@ Ag-NPs) and its potential antibacterial and anticancer activities against AGS and MCF-7 human cancer cells. J. Alloy. Compd. 820, 153186 (2020). https://doi.org/10.1016/j.jallcom.2019.153186

    Article  CAS  Google Scholar 

  146. 146.

    Seifipour, R., Nozari, M., Pishkar, L.: Green synthesis of silver nanoparticles using Tragopogon collinus leaf extract and study of their antibacterial effects. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01441-9

    Article  Google Scholar 

  147. 147.

    Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R.K., Kruszka, D., Kachlicki, P., Franklin, G.: Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11(6), 940 (2018). https://doi.org/10.3390/ma11060940

    Article  CAS  Google Scholar 

  148. 148.

    Wang, L., Lu, F., Liu, Y., Wu, Y., Wu, Z.: Photocatalytic degradation of organic dyes and antimicrobial activity of silver nanoparticles fast synthesized by flavonoids fraction of Psidium guajava L. leaves. J. Mol. Liq. 263, 187–192 (2018). https://doi.org/10.1016/j.molliq.2018.04.151

    Article  CAS  Google Scholar 

  149. 149.

    Rajeshkumar, S., Bharath, L.V.: Mechanism of plant-mediated synthesis of silver nanoparticles: a review on biomolecules involved, characterisation and antibacterial activity. Chem. Biol. Interact. 273, 219–227 (2017). https://doi.org/10.1016/j.cbi.2017.06.019

    Article  CAS  Google Scholar 

  150. 150.

    Vijayaraghavan, K., Ashokkumar, T.: Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. J. Environ. Chem. Eng. 5(5), 4866–4883 (2017). https://doi.org/10.1016/j.jece.2017.09.026

    Article  CAS  Google Scholar 

  151. 151.

    Beg, M., Maji, A., Mandal, A.K., Das, S., Aktara, M.N., Jha, P.K., Hossain, M.: Green synthesis of silver nanoparticles using Pongamia pinnata seed: characterization, antibacterial property, and spectroscopic investigation of interaction with human serum albumin. J. Mol. Recognit. 30(1), e2565 (2017). https://doi.org/10.1002/jmr.2565

    Article  CAS  Google Scholar 

  152. 152.

    Zhang, X.F., Liu, Z.G., Shen, W., Gurunathan, S.: Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534 (2016). https://doi.org/10.3390/ijms17091534

    Article  CAS  Google Scholar 

  153. 153.

    Arruda, S.C.C., Silva, A.L.D., Galazzi, R.M., Azevedo, R.A., Arruda, M.A.Z.: Nanoparticles applied to plant science: a review. Talanta 131, 693–705 (2015). https://doi.org/10.1016/j.talanta.2014.08.050

    Article  CAS  Google Scholar 

  154. 154.

    Ealias, A.M., Saravanakumar, M.P.: A review on the classification, characterisation, synthesis of nanoparticles and their application. Mater. Sci. Eng. 263, 032019 (2017). https://doi.org/10.1088/1757-899X/263/3/032019

    Article  Google Scholar 

  155. 155.

    Mourdikoudis, S., Pallares, R.M., Thanh, N.T.: Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27), 12871–12934 (2018). https://doi.org/10.1039/C8NR02278J

    Article  CAS  Google Scholar 

  156. 156.

    Bhatia, S.: Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural Polymer Drug Delivery Systems. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41129-3_2

    Google Scholar 

  157. 157.

    Rauwel, P., Küünal, S., Ferdov, S., Rauwel, E.: A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/682749

    Article  Google Scholar 

  158. 158.

    Baer, D.R., Gaspar, D.J., Nachimuthu, P., Techane, S.D., Castner, D.G.: Application of surface chemical analysis tools for characterization of nanoparticles. Anal. Bioanal. Chem. 396(3), 983–1002 (2010). https://doi.org/10.1007/s00216-009-3360-1

    Article  CAS  Google Scholar 

  159. 159.

    Sharma, K., Guleria, S., Razdan, V.K.: Green synthesis of silver nanoparticles using Ocimum gratissimum leaf extract: characterization, antimicrobial activity and toxicity analysis. J. Plant Biochem. Biotechnol. (2019). https://doi.org/10.1007/s13562-019-00522-2

    Article  Google Scholar 

  160. 160.

    Ibrahim, H.M.: Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 8(3), 265–275 (2015). https://doi.org/10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  161. 161.

    Verma, A., Mehata, M.S.: Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 9(1), 109–115 (2016). https://doi.org/10.1016/j.jrras.2015.11.001

    Article  CAS  Google Scholar 

  162. 162.

    Sithara, R., Selvakumar, P., Arun, C., Anandan, S., Sivashanmugam, P.: Economical synthesis of silver nanoparticles using leaf extract of Acalypha hispida and its application in the detection of Mn (II) ions. J. Adv. Res. 8(6), 561–568 (2017). https://doi.org/10.1016/j.jare.2017.07.001

    Article  CAS  Google Scholar 

  163. 163.

    Vishwasrao, C., Momin, B., Ananthanarayan, L.: Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valoriz. 10(8), 2353–2363 (2019). https://doi.org/10.1007/s12649-018-0230-0

    Article  CAS  Google Scholar 

  164. 164.

    Tamilarasi, P., Meena, P.: Green synthesis of silver nanoparticles (Ag NPs) using Gomphrena globosa (Globe amaranth) leaf extract and their characterization. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.04.025

    Article  Google Scholar 

  165. 165.

    Rajput, S., Kumar, D., Agrawal, V.: Green synthesis of silver nanoparticles using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep. (2020). https://doi.org/10.1007/s00299-020-02539-7

    Article  Google Scholar 

  166. 166.

    Senthil, B., Devasena, T., Prakash, B., Rajasekar, A.: Non-cytotoxic effect of green synthesized silver nanoparticles and its antibacterial activity. J. Photochem. Photobiol. B Biol. 177, 1–7 (2017). https://doi.org/10.1016/j.jphotobiol.2017.10.010

    Article  CAS  Google Scholar 

  167. 167.

    Said, M.I., Othman, A.A.: Fast green synthesis of silver nanoparticles using grape leaves extract. Mater. Res. Express 6(5), 055029 (2019). https://doi.org/10.1088/2053-1591/ab0481

    Article  CAS  Google Scholar 

  168. 168.

    Arya, G., Kumari, R.M., Gupta, N., Kumar, A., Chandra, R., Nimesh, S.: Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities. Artif. Cells Nanomed. Biotechnol. 46(5), 985–993 (2018). https://doi.org/10.1080/21691401.2017.1354302

    Article  CAS  Google Scholar 

  169. 169.

    Samari, F., Salehipoor, H., Eftekhar, E., Yousefinejad, S.: Low-temperature biosynthesis of silver nanoparticles using mango leaf extract: catalytic effect, antioxidant properties, anticancer activity and application for colorimetric sensing. New J. Chem. 42(19), 15905–15916 (2018). https://doi.org/10.1039/C8NJ03156H

    Article  CAS  Google Scholar 

  170. 170.

    Kumar, V., Singh, S., Srivastava, B., Bhadouria, R., Singh, R.: Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J. Environ. Chem. Eng. 7(3), 103094 (2019). https://doi.org/10.1016/j.jece.2019.103094

    Article  CAS  Google Scholar 

  171. 171.

    López-Miranda, J.L., Vázquez, M., Fletes, N., Esparza, R., Rosas, G.: Biosynthesis of silver nanoparticles using a Tamarix gallica leaf extract and their antibacterial activity. Mater. Lett. 176, 285–289 (2016). https://doi.org/10.1016/j.matlet.2016.04.126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Anu Bala is highly thankful to Council of Scientific and Industrial Research, Government of India, for the financial assistance Junior Research Fellowship (09/1183(0002)/2018-EMR-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gita Rani.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bala, A., Rani, G. A review on phytosynthesis, affecting factors and characterization techniques of silver nanoparticles designed by green approach. Int Nano Lett (2020). https://doi.org/10.1007/s40089-020-00309-7

Download citation

Keywords

  • Phytosynthesis
  • Phytochemicals
  • Plant-mediated synthesis
  • Silver nanoparticles
  • Characterization
  • Green synthesis