Skip to main content
Log in

Phase-frequency detector in QCA nanotechnology using novel flip-flop with reset terminal

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Today, due to the impossibility of further reducing the dimensions, electronic devices are faced with fundamental challenges in parameters such as speed, frequency, and power consumption for CMOS technology circuit. One solution is to replace CMOS technology with other technologies such as Quantum-dot Cellular Automata (QCA) technology. Extensive researches have been done for design digital circuits in QCA technology. Phase-frequency detector (PFD) is one of the main blocks in electrical and communication systems. In this paper, a structure is presented for a PFD in QCA technology for the first time. In the proposed structure, a D flip-flop (D-FF) with reset ability based on a new inverter gate is used. The new inverter gate of this D-FF compared to previous inverters, has output signal with high polarization level. Also, the proposed PFD has 199 cells, 0.22 μm2 occupied area and two clock cycles latency that is smaller compared with PFD which is designed with the conventional inverter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Lent, C.S., et al.: Quantum cellular automata. Nanotechnology 4(1), 49 (1993)

    Article  Google Scholar 

  2. Seminario, J.M., et al.: A molecular device operating at terahertz frequencies: theoretical simulations. IEEE Trans. Nanotechnol. 3(1), 215–218 (2004)

    Article  Google Scholar 

  3. DeHon, A., Wilson, M.J.: Nanowire-based sublithographic programmable logic arrays. ACM, New York (2004)

    Book  Google Scholar 

  4. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91(2), 823–831 (2002)

    Article  CAS  Google Scholar 

  5. Razavi, B.: Design of Analog CMOS Integrated Circuits. 2nd edition. McGraw-Hill, New York (2017)

    Google Scholar 

  6. Rahimpour, H., et al.: All digital fast lock DLL-based frequency multiplier. Analog Integr. Circ. Sig. Process 78(3), 819–826 (2014)

    Article  Google Scholar 

  7. Gholami, M., Ardeshir, G.: Jitter of delay-locked loops due to PFD. IEEE Trans. Very Large Scale Integr. Syst. 22(10), 2176–2180 (2014)

    Article  Google Scholar 

  8. Zahmatkesh, M., et al.: Robust coplanar full adder based on novel inverter in quantum cellular automata. Int. J. Theor. Phys. 58(2), 639–655 (2019)

    Article  Google Scholar 

  9. Walus, K., et al.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  Google Scholar 

  10. Snider, G.L., et al.: Quantum-dot cellular automata: introduction and experimental overview. IEEE, New Jersey (2001)

    Book  Google Scholar 

  11. Xiao, L.-R., Chen, X.-X., Ying, S.-Y.: Design of dual-edge triggered flip-flops based on quantum-dot cellular automata. J. Zhejiang Univ. Sci. C 13(5), 385–392 (2012)

    Article  Google Scholar 

  12. Binaei, R., Gholami, M.: Design of multiplexer-based D flip-flop with set and reset ability in quantum dot cellular automata nanotechnology. Int. J. Theor. Phys. 58(3), 687–699 (2019)

    Article  Google Scholar 

  13. Roshan, M.G., Gholami, M.: Novel D latches and D flip-flops with set and reset ability in QCA nanotechnology using minimum cells and area. Int. J. Theor. Phys. 57(10), 3223–3241 (2018)

    Article  Google Scholar 

  14. Zoka, S., Gholami, M.: Two novel D-flip flops with level triggered reset in quantum dot cellular automata technology. Int. J. Eng. Trans. C: Asp. 31(3), 415–421 (2017)

    Google Scholar 

  15. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  Google Scholar 

  16. Gin, A., Tougaw, P.D., Williams, S.: An alternative geometry for quantum-dot cellular automata. J. Appl. Phys. 85(12), 8281–8286 (1999)

    Article  CAS  Google Scholar 

  17. Amirzadeh, Z., Gholami, M.: Counters designs with minimum number of cells and area in the quantum-dot cellular automata technology. Int. J. Theor. Phys. 58, 1–18 (2019)

    Article  Google Scholar 

  18. Gholami, M.: Phase detector with minimal blind zone and reset time for GSamples/s DLLs. Circuits Syst. Signal Process. 36(9), 3549–3563 (2017)

    Article  Google Scholar 

  19. Sofimowloodi, S., Razaghian, F., Gholami, M.: Low-power high-frequency phase frequency detector for minimal blind-zone phase-locked loops. Circuits Syst. Signal Process. 38(2), 498–511 (2019)

    Article  Google Scholar 

  20. Abutaleb, M.M.: Robust and efficient quantum-dot cellular automata synchronous counters. Microelectron. J. 61, 6–14 (2017)

    Article  Google Scholar 

  21. Srivastava, S., et al.: QCAPro-an error-power estimation tool for QCA circuit design. IEEE, New Jersey (2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Gholami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamdar, H., Ardeshir, G. & Gholami, M. Phase-frequency detector in QCA nanotechnology using novel flip-flop with reset terminal. Int Nano Lett 10, 111–118 (2020). https://doi.org/10.1007/s40089-020-00300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-020-00300-2

Keyword

Navigation