Skip to main content

Characterization and internalization of nanodiamond–trehalose conjugates into mammalian fibroblast cells of naked mole rat

Abstract

Trehalose is a natural compound produced by certain organisms to cope with freezing and thawing. It, therefore, has a potential for use as a cryoprotective agent, but the absence of specific receptors requires alternative mechanisms of intracellular delivery. Nanodiamonds are a non-toxic, carbon-based technology, and when conjugated with trehalose, they may offer a suitable delivery system for trehalose internalization. The characteristics of commercially available detonation nanodiamonds with carboxylated (ND-COOH) or hydrogenated (ND-H) surface structures were characterized using dynamic light scattering (DLS) to determine particle size and zeta potential. Trehalose adsorption to the two nanodiamonds was examined at varying concentrations and pH values using Fourier-transform infrared spectroscopy (FT-IR). Naked mole rat fibroblasts were used to study internalization of three different suspensions of trehalose-conjugated nanodiamonds: nanodiamond alone (T1); nanodiamond + trehalose intense wash (T2); and nanodiamond + trehalose moderate wash (T3) at concentrations of 10 or 50 μg/ml (6 or 36 μg/cm2) and exposure durations of 2 or 24 h. Internalization was evaluated by flow cytometry analysis and dark-field microscopy. Cells incubated with the three nanodiamond suspensions were examined by phase-contrast microscopy to evaluate cell morphology after the addition of propidium iodide dye which detects necrotic cells. ND-COOH and ND-H suspensions had mean particle diameters of 8 nm and 32 nm, and zeta potentials of − 49 mv and + 53 mv, respectively. FT-IR absorption spectra showed that trehalose adsorption to ND-COOH and ND-H was greatest at a trehalose concentration of 50 mM and at a neutral pH. ND-COOH particles displayed the greatest affinity with trehalose. Flow cytometry analysis indicated dose- and exposure-dependent increases in light scattering (correlating with increased internal complexity) for all nanodiamond suspensions (T1, T2, and T3), with the highest levels of internalization observed with the 50 μg/ml concentration at exposure durations of 24 h. Untreated cells exhibited low light scattering. There were no significant differences between T1, T2, and T3 in the number of cells internalized. Cell size was not altered by internalization. Internalization of the nanodiamond suspensions was confirmed by dark-field microscopy. Toxicology experiments indicated some alterations to cell morphology, but no effect of the nanodiamond suspensions on cell counts or cell death. Nanodiamond delivery systems offer potential for the internalization of trehalose in mammalian cells. Further experiments should investigate the efficacy of trehalose–nanodiamond particles as cryoprotective agents.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abazari, A., Meimetis, L.G., Budin, G., Bale, S.S., Weissleder, R., Toner, M.: Engineered trehalose permeable to mammalian cells. PLoS ONE 10(6), e0130323 (2015)

    Article  Google Scholar 

  2. Behm, C.A.: The role of trehalose in the physiology of nematodes. Int. J. Parasitol. 27, 215–229 (1997)

    CAS  Article  Google Scholar 

  3. Bhattacharjee, S., Rietjens, I.M., Singh, M.P., Atkins, T.M., Purkait, T.K., Xu, Z., Regli, S., Shukaliak, A., Clark, R.J., Mitchell, B.S., Alink, G.M., Marcelis, A.T., Fink, M.J., Veinot, J.G., Kauzlarich, S.M., Zuilhof, H.: Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale. 5(11), 4870–4883 (2013)

    CAS  Article  Google Scholar 

  4. Buffenstein, R.: The naked mole-rat: a new long-living model for human aging research. J. Gerontol. A Biol. Sci. Med. Sci. 60(11), 1369–1377 (2005)

    Article  Google Scholar 

  5. Crowe, J.H., Crowe, L.M., Oliver, A.E., Tsvetkova, N., Wolkers, W., Tablin, F.: The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43, 89–105 (2001)

    CAS  Article  Google Scholar 

  6. Faklaris, O., Joshi, V., Irinopoulou, T., Tauc, P., Sennour, M., Girard, H., Gesset, C., Arnault, J.C., Thorel, A., Boudou, J.P., et al.: Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009)

    CAS  Article  Google Scholar 

  7. Fröhlich, E.: The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine. 7, 5577–5591 (2012)

    Article  Google Scholar 

  8. Jain, N.K., Roy, I.: Trehalose and protein stability. Curr. Protoc. Protein Sci. 59, 4.9.1–4.9.12 (2010)

    Article  Google Scholar 

  9. Kandror, O., DeLeon, A., Goldberg, A.L.: Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. USA. 99(15), 9727–9732 (2002)

    CAS  Article  Google Scholar 

  10. Krueger, A.: Beyond the shine: recent progress in applications of nanodiamond. J. Mater. Chem. 21, 12571–12578 (2011)

    CAS  Article  Google Scholar 

  11. Leslie, S.B., Teter, S.A., Crowe, L.M., Crowe, J.H.: Trehalose lowers membrane phase transitions in dry yeast cells. Biochim. Biophys. Acta. 1192, 7–13 (1994)

    CAS  Article  Google Scholar 

  12. Lin, T.Y., Timasheff, S.N.: On the role of surface tension in the stabilization of globular proteins. Protein Sci. 5(2), 372–381 (1996)

    CAS  Article  Google Scholar 

  13. Olsson, C., Jansson, H., Swenson, J.: The role of trehalose for the stabilization of proteins. J. Phys. Chem. B. 120(20), 4723–4731 (2016)

    CAS  Article  Google Scholar 

  14. Paget, V., Sergent, J.A., Grall, R., Altmeyer-Morel, S., Girard, H.A., Petit, T., Gesset, C., Mermoux, M., Bergonzo, P., Arnault, J.C., Chevillard, S.: Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology. 8(Suppl 1), 46–56 (2014)

    CAS  Article  Google Scholar 

  15. Paynter, S.J.: Current status of the cryopreservation of human unfertilized oocytes. Hum. Reprod. Update. 6(5), 449–456 (2000)

    CAS  Article  Google Scholar 

  16. Perevedentseva, E., Hong, S.F., Huang, K.J., Chiang, I.T., Lee, C.Y., Tseng, Y.T., Cheng, C.L.: Nanodiamond internalization in cells and the cell uptake mechanism. J. Nanoparticle Res. 15, 1834 (2013)

    Article  Google Scholar 

  17. Rao, W., Huang, H., Wang, H., Zhao, S., Dumbleton, J., Zhao, G., He, X.: Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl. Mater. Interfaces. 7(8), 5017–5028 (2015)

    CAS  Article  Google Scholar 

  18. Saldmann, F., Viltard, M., Leroy, C., Friedlander, G.: The naked mole rat: a unique example of positive oxidative stress. Oxidative Med. Cell. Longev. 2019, 1–7 (2019). https://doi.org/10.1155/2019/4502819

    CAS  Article  Google Scholar 

  19. Sano, F., Asakawa, N., Inoue, Y., Sakurai, M.: A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39, 80–87 (1999)

    CAS  Article  Google Scholar 

  20. Schuhmacher, L., Husson, Z., Smith, E.S.J.: The naked mole-rat as an animal model in biomedical research: current perspectives. Anim. Physiol. 7, 137–148 (2015)

    Google Scholar 

  21. Singer, M.A., Lindquist, S.: Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell. 1, 639–648 (1998)

    CAS  Article  Google Scholar 

  22. Stanishevsky, A.V., Walock, M.J., Catledge, S.A.: Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma. Appl. Surf. Sci. 357, 1403–1409 (2015)

    CAS  Article  Google Scholar 

  23. Storey, K.B., Storey, J.M.: Frozen and alive. Sci. Am. 263(6), 92–97 (1990)

    CAS  Article  Google Scholar 

  24. Suzuki, H., Toyooka, T., Ibuki, Y.: Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ. Sci. Tech. 41(8), 3018–3024 (2007)

    CAS  Article  Google Scholar 

  25. Turcheniuk, K., Mochalin, V.N.: Biomedical applications of nanodiamond. Nanotechnology. 28(25), 252001 (2017). (Review)

    CAS  Article  Google Scholar 

  26. Wang, B., Liu, G., Balamurugan, V., Sui, Y., Wang, G., Song, Y., Chang, Q.: Apatite nanoparticles mediate intracellular delivery of trehalose and increase survival of cryopreserved cells. Cryobiology 86, 103–110 (2019)

    CAS  Article  Google Scholar 

  27. Wen, X., Wang, S., Duman, J.G., Arifin, J.F., Juwita, V., Goddard 3rd, W.A., et al.: Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature. Proc. Natl. Acad. Sci. USA. 113(24), 6683–6688 (2016)

    CAS  Article  Google Scholar 

  28. Wolfe, J., Bryant, G.: Freezing, drying, and/or vitrification of membrane–solute–water systems. Cryobiology 39, 103–129 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Hughes Girard and Romain Grall (CEA Paris Saclay) for their expertise in nanodiamonds, and Jenny Grice for assistance with drafting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Saldmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saldmann, F., Saldmann, A. & Lemaire, M.C. Characterization and internalization of nanodiamond–trehalose conjugates into mammalian fibroblast cells of naked mole rat. Int Nano Lett 10, 151–157 (2020). https://doi.org/10.1007/s40089-020-00298-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-020-00298-7

Keywords

  • Cryopreservation
  • Naked mole rat
  • Internalization
  • Nanodiamond
  • Nanotechnology
  • Trehalose