Abazari, A., Meimetis, L.G., Budin, G., Bale, S.S., Weissleder, R., Toner, M.: Engineered trehalose permeable to mammalian cells. PLoS ONE 10(6), e0130323 (2015)
Article
Google Scholar
Behm, C.A.: The role of trehalose in the physiology of nematodes. Int. J. Parasitol. 27, 215–229 (1997)
CAS
Article
Google Scholar
Bhattacharjee, S., Rietjens, I.M., Singh, M.P., Atkins, T.M., Purkait, T.K., Xu, Z., Regli, S., Shukaliak, A., Clark, R.J., Mitchell, B.S., Alink, G.M., Marcelis, A.T., Fink, M.J., Veinot, J.G., Kauzlarich, S.M., Zuilhof, H.: Cytotoxicity of surface-functionalized silicon and germanium nanoparticles: the dominant role of surface charges. Nanoscale. 5(11), 4870–4883 (2013)
CAS
Article
Google Scholar
Buffenstein, R.: The naked mole-rat: a new long-living model for human aging research. J. Gerontol. A Biol. Sci. Med. Sci. 60(11), 1369–1377 (2005)
Article
Google Scholar
Crowe, J.H., Crowe, L.M., Oliver, A.E., Tsvetkova, N., Wolkers, W., Tablin, F.: The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43, 89–105 (2001)
CAS
Article
Google Scholar
Faklaris, O., Joshi, V., Irinopoulou, T., Tauc, P., Sennour, M., Girard, H., Gesset, C., Arnault, J.C., Thorel, A., Boudou, J.P., et al.: Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3, 3955–3962 (2009)
CAS
Article
Google Scholar
Fröhlich, E.: The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine. 7, 5577–5591 (2012)
Article
Google Scholar
Jain, N.K., Roy, I.: Trehalose and protein stability. Curr. Protoc. Protein Sci. 59, 4.9.1–4.9.12 (2010)
Article
Google Scholar
Kandror, O., DeLeon, A., Goldberg, A.L.: Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. USA. 99(15), 9727–9732 (2002)
CAS
Article
Google Scholar
Krueger, A.: Beyond the shine: recent progress in applications of nanodiamond. J. Mater. Chem. 21, 12571–12578 (2011)
CAS
Article
Google Scholar
Leslie, S.B., Teter, S.A., Crowe, L.M., Crowe, J.H.: Trehalose lowers membrane phase transitions in dry yeast cells. Biochim. Biophys. Acta. 1192, 7–13 (1994)
CAS
Article
Google Scholar
Lin, T.Y., Timasheff, S.N.: On the role of surface tension in the stabilization of globular proteins. Protein Sci. 5(2), 372–381 (1996)
CAS
Article
Google Scholar
Olsson, C., Jansson, H., Swenson, J.: The role of trehalose for the stabilization of proteins. J. Phys. Chem. B. 120(20), 4723–4731 (2016)
CAS
Article
Google Scholar
Paget, V., Sergent, J.A., Grall, R., Altmeyer-Morel, S., Girard, H.A., Petit, T., Gesset, C., Mermoux, M., Bergonzo, P., Arnault, J.C., Chevillard, S.: Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines. Nanotoxicology. 8(Suppl 1), 46–56 (2014)
CAS
Article
Google Scholar
Paynter, S.J.: Current status of the cryopreservation of human unfertilized oocytes. Hum. Reprod. Update. 6(5), 449–456 (2000)
CAS
Article
Google Scholar
Perevedentseva, E., Hong, S.F., Huang, K.J., Chiang, I.T., Lee, C.Y., Tseng, Y.T., Cheng, C.L.: Nanodiamond internalization in cells and the cell uptake mechanism. J. Nanoparticle Res. 15, 1834 (2013)
Article
Google Scholar
Rao, W., Huang, H., Wang, H., Zhao, S., Dumbleton, J., Zhao, G., He, X.: Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant. ACS Appl. Mater. Interfaces. 7(8), 5017–5028 (2015)
CAS
Article
Google Scholar
Saldmann, F., Viltard, M., Leroy, C., Friedlander, G.: The naked mole rat: a unique example of positive oxidative stress. Oxidative Med. Cell. Longev. 2019, 1–7 (2019). https://doi.org/10.1155/2019/4502819
CAS
Article
Google Scholar
Sano, F., Asakawa, N., Inoue, Y., Sakurai, M.: A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39, 80–87 (1999)
CAS
Article
Google Scholar
Schuhmacher, L., Husson, Z., Smith, E.S.J.: The naked mole-rat as an animal model in biomedical research: current perspectives. Anim. Physiol. 7, 137–148 (2015)
Google Scholar
Singer, M.A., Lindquist, S.: Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell. 1, 639–648 (1998)
CAS
Article
Google Scholar
Stanishevsky, A.V., Walock, M.J., Catledge, S.A.: Surface modification and stability of detonation nanodiamonds in microwave gas discharge plasma. Appl. Surf. Sci. 357, 1403–1409 (2015)
CAS
Article
Google Scholar
Storey, K.B., Storey, J.M.: Frozen and alive. Sci. Am. 263(6), 92–97 (1990)
CAS
Article
Google Scholar
Suzuki, H., Toyooka, T., Ibuki, Y.: Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ. Sci. Tech. 41(8), 3018–3024 (2007)
CAS
Article
Google Scholar
Turcheniuk, K., Mochalin, V.N.: Biomedical applications of nanodiamond. Nanotechnology. 28(25), 252001 (2017). (Review)
CAS
Article
Google Scholar
Wang, B., Liu, G., Balamurugan, V., Sui, Y., Wang, G., Song, Y., Chang, Q.: Apatite nanoparticles mediate intracellular delivery of trehalose and increase survival of cryopreserved cells. Cryobiology 86, 103–110 (2019)
CAS
Article
Google Scholar
Wen, X., Wang, S., Duman, J.G., Arifin, J.F., Juwita, V., Goddard 3rd, W.A., et al.: Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature. Proc. Natl. Acad. Sci. USA. 113(24), 6683–6688 (2016)
CAS
Article
Google Scholar
Wolfe, J., Bryant, G.: Freezing, drying, and/or vitrification of membrane–solute–water systems. Cryobiology 39, 103–129 (1999)
CAS
Article
Google Scholar