Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Tunnel magnetoresistance in theB24N24 cage by the considering contacts type

  • 7 Accesses


In this research, spin-transport properties of the B24N24 molecule, when it is connected through a single and multiple atom contacts to two ferromagnetic electrodes have been investigated using the Landauer formula and the non-equilibrium Green’s function. The results show that the current has a stepwise behavior against the bias voltage; the off state of the B24N24 molecule occurs at low voltages, independent of the type of contact. The characteristic of the current in terms of the gate voltage is dependent on the contact type in usage, and generally less for single contact configurations as compared to those seen in multiple contact configurations. In the case of contacting one atom of the B24N24 molecule to electrodes, the B24N24 has conduction property, while in multiple contacts it shows property of a semiconductor. The Tunneling Magnetic Resistance (TMR) contained three peaks no matter of the contact type, and whose maxima for single and 4-atom (about 42%) and for 8-atom (about 37%) all occurred at zero bias voltage. The maxima of TMR for 6-atom arrangement went up at the bias voltages − 1.2 V and + 1.2 V, about 53%. And, last but not the least, the TMR maxima change locations as the voltage increases.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Taylor, J., Brandbyge, M., Stokbro, K.: Conductance switching in a molecular device: the role of side groups and intermolecular interactions. Phys. Rev. B 68, 121101 (2003)

  2. 2.

    Di Ventra, M., Kim, S.G., Pantelides, S.T., Lang, N.D.: Temperature effects on the transport properties of molecules. Phys. Rev. Lett. 86, 288–291 (2001)

  3. 3.

    Luo, Y., Fu, Y.: Effects of chemical and physical modifications on the electronic transport properties of molecular junctions. J. Chem. Phys. 117, 10283–10290 (2002). https://doi.org/10.1063/1.1518962

  4. 4.

    Zhao, P., Fang, C.F., Xia, C.J., Wang, Y.M., Liu, D.S., Xie, S.J.: A possible anthracene-based optical molecular switch driven by a reversible photodimerization reaction. Appl. Phys. Lett. 93, 013113 (2008). https://doi.org/10.1063/1.2938415

  5. 5.

    Zeng, C., Wang, H., Wang, B., Yang, J., Hou, J.G.: Negative differential-resistance device involving two C60 molecules. Appl. Phys. Lett. 77, 3595–3597 (2000). https://doi.org/10.1063/1.1328773

  6. 6.

    Zhang, X.J., Long, M.Q., Chen, K.Q., Shuai, Z., Wan, Q., Zou, B.S., Zhang, Y.: Electronic transport properties in doped C60 molecular devices. Appl. Phys. Lett. 94, 073503 (2009). https://doi.org/10.1063/1.3082085

  7. 7.

    Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1999)

  8. 8.

    Van Wees, B.J., Van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., Van der Marel, D., Foxon, C.T.: Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848–850 (1988). https://doi.org/10.1103/PhysRevLett.60.848

  9. 9.

    Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A., Jones, G.A.C.: One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C 21, L209–L214 (1988)

  10. 10.

    Sze, S.: Physics of Semiconductor Devices. Wiley, New York (1981)

  11. 11.

    Chang, L.L., Mendez, E.E., Tejedor, C.: Resonant Tunneling in Semiconductors. Plenum, New York (1991)

  12. 12.

    Pati, R., Senapati, L., Ajayan, P.M., Nayak, S.K.: First-principles calculations of spin-polarized electron transport in a molecular wire: molecular spin valve. Phys. Rev. B 68, 100407 (2003). https://doi.org/10.1103/PhysRevB.68.100407

  13. 13.

    Senapati, L., Pati, R., Erwin, S.C.: Controlling spin-polarized electron transport through a molecule: the role of molecular conformation. Phys. Rev. B 76, 024438 (2007). https://doi.org/10.1103/PhysRevB.76.024438

  14. 14.

    Dalgleish, H., Kirczenow, G.: Inverse magnetoresistance of molecular junctions. Phys. Rev. B 72, 184407 (2005). https://doi.org/10.1103/PhysRevB.72.184407

  15. 15.

    Waldron, D., Haney, P., Larade, B., MacDonald, A., Guo, H.: Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys. Rev. Lett. 96, 166804 (2006)

  16. 16.

    Wang, B., Zhu, Y., Ren, W., Wang, J., Guo, H.: Spin-dependent transport in Fe-doped carbon nanotubes. Phys. Rev. B 75, 235415 (2007). https://doi.org/10.1103/PhysRevB.75.235415

  17. 17.

    He, H., Pandey, R., Pati, R.: Spin-polarized electron transport of a self-assembled organic monolayer on a Ni(111) substrate: an organic spin switch. Phys. Rev. B 73, 195311 (2006). https://doi.org/10.1103/PhysRevB.73.195311

  18. 18.

    Ning, Z., Zhu, Y., Wang, J., Guo, H.: Quantitative analysis of nonequilibrium spin injection into molecular tunnel junctions. Phys. Rev. Lett. 100, 056803 (2008)

  19. 19.

    Wang, R.Q., Zhou, Y.Q., Wang, B., Xing, D.Y.: Spin-dependent inelastic transport through single-molecule junctions with ferromagnetic electrodes. Phys. Rev. B 75, 045318 (2007)

  20. 20.

    Mehrez, H., Taylor, J., Guo, H., Wang, J., Roland, C.: Carbon nanotube based magnetic tunnel junctions. Phys. Rev. Lett. 84, 2682–2685 (2000). https://doi.org/10.1103/PhysRevLett.84.2682

  21. 21.

    Safarzadeh, A.: Tunnel magnetoresistance of a single-molecule junction. J. Appl. Phys. 104, 123715 (2008). https://doi.org/10.1063/1.3050347

  22. 22.

    Dalgleish, H., Kirczenow, G.: Spin-current rectification in molecular wires. Phys. Rev. B 73, 235436 (2006). https://doi.org/10.1103/PhysRevB.73.235436

  23. 23.

    Tsymbal, E.Y., Zutic, I.: Handbook of spin transport and magnetism. CRC Press, Boca Raton (2011)

  24. 24.

    Yoshida, K., Hamada, I., Sakata, S., Umeno, A., Tsukada, M., Hirakawa, K.: Gate-tunable large negative tunnel magnetoresistance in Ni–C60–Ni single molecule transistors. Nano Lett. 13, 481–485 (2013)

  25. 25.

    Fei, X., Wu, G., Lopez, V., Lu, G., Gao, H.J., Gao, L.: Spin-dependent conductance in Co/C60/Co/Ni single-molecule junctions in the contact regime. J. Phys. Chem. C 119, 11975–11981 (2015)

  26. 26.

    Ouyang, M., Awschalom, D.: Coherent spin transfer between molecularly bridged quantum dots. Science 301, 1074–1078 (2003)

  27. 27.

    Xiong, Z.H., Wu, D., Vardeny, Z.V., Shi, J.: Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004)

  28. 28.

    Julliere, M.: Tunneling between ferromagnetic films. Phys. Lett. A 54, 225–226 (1975)

  29. 29.

    Miyazaki, T., Tezuka, N.: Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139, 231–234 (1995). https://doi.org/10.1016/0304-8853(95)90001-2

  30. 30.

    Moodera, J.S., Kinder, L.R., Wong, T.M., Meservey, R.: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74, 3273–3276 (1995)

  31. 31.

    Lu, J.Q., Wu, J., Chen, H., Duan, W., Gu, B.L., Kawazoe, Y.: Electronic transport mechanism of a molecular electronic device: structural effects and terminal atoms. Phys. Lett. A 323, 154–158 (2004)

  32. 32.

    Paulsson, M., Stafstro, S.: Conductance manipulation at the molecular level. J. Phys.: Condens. Matter 11, 3555–3562 (1999)

  33. 33.

    Wu, H.S., Cu, X.Y., Qin, X.F., Strout, D.L.: Boron nitride cages from B12N12 to B36N36: square–hexagon alternants vs boron nitride tubes. J. Mol. Model. 12, 537–542 (2006)

  34. 34.

    Gupta, S.K., He, H., Lukačević, I., Pandey, R.: Spin-dependent electron transport in C and Ge doped BN monolayers. Phys. Chem. Chem. Phys. 19, 30370 (2017)

  35. 35.

    Egami, Y., Akera, H.: First-principles study on electron transport through BN-dimer embedded zigzag carbon nanotubes. Phys. E 88, 212–217 (2017)

  36. 36.

    Ouyang, J., Long, M., Zhang, X., Zhang, D., He, J., Gao, Y.: Electronic structures and transport properties of zigzag BNC nanoribbons with different combinations of BN and grapheme nanoribbons. Compu. Cond. Matt. 4, 40–45 (2015)

  37. 37.

    Vanaie, H.R., Yaghobi, M.: Electronic tunneling through a fullerene-like molecular bridge. Ind. J. Phys. 92, 453–460 (2018). https://doi.org/10.1007/s12648-017-1120-1

  38. 38.

    Sanvito, S.: Memoirs of a spin. Nature Nanotech. 2, 204–206 (2007)

  39. 39.

    Oku, T., Hirano, T., Kuno, M., Kusunose, T., Niihara, K., Suganuma, K.: Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials. Mater. Sci. Eng. B 74, 206–217 (2000)

  40. 40.

    Zare-Kolsaraki, H., Micklitz, H.: Spin-dependent transport in films composed of Co clusters and C60 fullerenes. Eur. Phys. J. B 40, 103–109 (2004)

  41. 41.

    Strout, D.L.: Structure and stability of boron nitrides: the crossover between rings and cages. J. Phys. Chem. A 105, 261–263 (2001)

  42. 42.

    Stephan, O., Bando, Y., Loiseau, A., Willaime, F., Shramchenko, N., Tamiya, T., Sato, T.: Formation of small single-layer and nested BN cages under electron irradiation of nanotubes and bulk material. Appl. Phys. A. 67, 107–111 (1998)

  43. 43.

    Strout, D.L.: Fullerene-like cages versus alternant cages: isomer stability of B13N13, B14N14, and B16N16 Chem. Phys. Lett. 383, 95–98 (2004). https://doi.org/10.1016/j.cplett.2003.10.141

  44. 44.

    Zope, R.R., Baruah, T., Pederson, M.R., Dunlap, B.I.: Electronic structure, vibrational stability, infra-red, and Raman spectra of B24N24 cages. Chem. Phys. Lett. 393, 300–304 (2004). https://doi.org/10.1016/j.cplett.2004.06.047

  45. 45.

    Su, W.P., Schrieffer, J.R., Heeger, A.J.: Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980)

  46. 46.

    Ketabi, S.A., Nakhaee, M.: Influence of soliton distributions on the spin-dependent electronic transport through polyacetylene molecule. Pramana J. Phys. 86, 669–680 (2016)

  47. 47.

    Datta, S.: Electronic transport: atom to transistor. Cambridge University Press, New York (2005)

  48. 48.

    Asai, Y., Fukuyama, H.: Theory of length-dependent conductance in one-dimensional chains. Phys. Rev. B 72, 085431 (2005). https://doi.org/10.1103/PhysRevB.72.085431

  49. 49.

    Vanaie, H.R., Yaghobi, M.: Effect of gate voltage on spin dependent transport through a M@C60 (M = Cs, Li and Na) molecular junction. Physica E 60, 147–155 (2014). https://doi.org/10.1016/j.physe.2014.02.009

  50. 50.

    Oku, T., Nishiwaki, A., Narita, I., Gonda, M.: Formation and structure of B24N24 clusters. Chem. Phys. Lett. 380, 620–623 (2003)

  51. 51.

    Yaghobi, M., Yaghobi, M.: Structural, magneto and optical properties of BX−1NXC and BXNX−1C cages (X = 12, 24 and 36). Mol. Phys. 112, 206–212 (2014). https://doi.org/10.1080/00268976.2013.807370

  52. 52.

    Li, X.F., Chen, K.Q., Wang, L., Luo, Y.: Effects of interface roughness on electronic transport properties of nanotube-molecule-nanotube junctions. J. Phys. Chem. C 114, 12335–12340 (2010)

Download references

Author information

Correspondence to Mojtaba Yaghobi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohammadmoradi, Y., Yaghobi, M., Yuonesi, M. et al. Tunnel magnetoresistance in theB24N24 cage by the considering contacts type. Int Nano Lett 10, 61–69 (2020). https://doi.org/10.1007/s40089-020-00294-x

Download citation


  • Spin-dependent transport
  • Tunneling magnetoresistance
  • B24N24 cage
  • Non-equilibrium Green’s function